

WINE SHELF LIFE IMPROVEMENT

Eglantine Chauffour, Enartis USA

- •What is Wine Shelf life?
- The Redox chemistry of the wine
 - Redox potential
 - Oxidation reactions
- Managing oxidation reactions during winemaking process
- Innovative tools to evaluate wine resistance to oxidation and manage oxygen
- •Q&A

THE RIGHT PRODUCT AT THE RIGHT TIME

WINE EVOLUTION AND LONGEVITY

REDOX CHEMISTRY

Transfer of electrons

- Oxidation = loss of electron
- Reduction = gain of electron

Redox potential (mV) = tendency to gain or yield

electrons

Reaction	Eh (mV)	Eh (mV)
	ph 3.5	ph 4
H2O2 + 2H + 2e = 2H2O	1570	1540
O2 + 4H + 4e = 2H2O	1020	990
Fe3+ + 1e = Fe2+	770	770
O2 + 2H + 2e = H2O2	490	460
Cu2+ + 1e = Cu+	160	160
S + 2H + 2e = H2S	-70	-100
Acetaldehyde + 2H + 2e = Ethanol	-410	-440

Metals
acids/pH
Phenolic compounds
Aldehydes
Ethanol
microorganisms
Aromatic compounds
Glutathion

OXIDO-REDUCTION REACTIONS

REMOVE CATALYZERS

Prevent oxidation
Improve wine redox stability
Any time of the wine life!

HOW IMPORTANT IS THE ROLE OF METALS IN WINE?

RESIDUAL COPPER AND VSC

AWRI, Marlize Bekker, ASEV, 2017

PVI/PVP AND CHITOSAN

PVI/PVP

$$Cu^{2+} > Au^{2+} = Ag^{2+} > Fe^{3+} > Mn^{2+} > Al^{3+}$$

Chitosan

$$Fe^{3+} > Cu^{2+} > Au^{2+} = Ag^{2+} > Mn^{2+} > Al^{3+}$$

RESULTS...

REDUCTION OF METALS IN WINE IN % COMPARING TO CONTROL

OXYGEN RADICAL SCAVENGING

TAN SLI: OXYGEN SCAVENGER

enartis —

- Scavenge radicals and limit oxidation
- Stabilize redox potential
- Binds with mercaptans to treat reduction

Applications:

- Transfer, racking
- Pre-bottling
- Treat reduction
- Extend wine shelf life

Δ420- 6 DAYS AFTER 2 RACK OFF

REDUCE SUBSTRATES/PRECURSORS

Phenolic compounds
Dissolved oxygen
Reduce VSC precursors

REDUCE OXIDATION SUBSTRATES

ENARTIS STAB SLI

- 'Active' lees
- PVPP
- Oak tannin

Wine after 6 months ageing on shelf. Control VS Stab SLI at 20 g/hL

Yeast metabolites

- Yeast nutrition
- SH amino acids

Precursors

- Elemental S
- SH amino acids
- Unknown

Oxygen management

- Yeast metabolism
- Quinone formation
- Oxidation of mercaptans to disulfides

 $O = O = \begin{bmatrix} H \\ S & O \end{bmatrix}$

SO₂ as a reductive agent : - 60 mV

Ascorbic acid as reductive agent: - 140 mV

REDUCING AGENT

PREPARATION FOR BOTTLING

Check your wine stability

- Browning test
- Oxidative stability
- Pinking test
- Antioxidant Capacity (RedOX/CaOX)

Oxygen management during bottling Choice of closure

TAKE HOME MESSAGES

Wine Shelf life: the right product at the right time

Redox potential is essential

Stabilize redox potential

- Eliminate metals
- Tan SLI

Limit precursors of oxidation and/or reduction

- Remove catechins with fining or Stab SLI
- Limit dissolved oxygen
- Yeast nutrition
- Limit reductive lees ageing

Check wine stability before bottling

INTERESTING LITERATURE

- Review of Oxidative Processes in Wine and Value of Reduction Potentials in Enology. Danilewicz, 2011
- •Interaction of Sulfur Dioxide, Polyphenols, and Oxygen in a Wine-Model System: Central Role of Iron and Copper. Danilewicz, 2007
- The Redox potential of Juice and wine. Boulton, 2017
- Controlling Redox Potential during fermentations. Boulton 2016
- •The effects of pH and copper on the formation of volatile sulfur compounds in Chardonnay and Shiraz wines post-bottling. Marlize Z. Bekker, 2016
- •Myths and facts regarding the role of precursors in the formation of 'reductive aroma' compounds in wines post-bottling. Marlize Z. Bekker, 2016
- The role of trace metals in wine 'reduction'. AWRI.

eglantine.chauffour@enartis.com

More webinars at http://www.enartis.com/us/focus-on

Website: www.Enartis.com/US

Phone: (707)838-6312

THANK YOU FOR YOUR ATTENTION!