

MICROBES MANAGEMENT IN WINEMAKING

EGLANTINE CHAUFFOUR - ENARTIS USA

WEBINAR INFORMATION

- 35 minute presentation + 10 minute Q&A
- Save Qs until the end of the presentation
- Use chat box for audio/connection issues or go on <u>https://support.webinato.com/support/home</u>
- Recording in progress
- Poll questions

MAIN WINE SPOILAGE MICROBES

POLL

WHY MANAGE MICROBIAL ACTIVITY IN WINE?

SULFIDES: PREVENTION / TREATMENTS

Prevention

- Juice fining
- Fermentation management
- Low H₂S producer yeast
- Limit reductive lees ageing

Treatments

- Aeration?
- Cu fining
- Tannin addition
- SO₂, AA, Cu

BRETT TAINT

Volatile phenols: 4-EP, 4-EG

Isovaleric acid

<u>When?</u> End fermentation, oak ageing, bottling

LACTIC ACID BACTERIA TAINT

Mousiness = ACTPY, ETPY, ACPY

- 2-acetyltetrahydropyridine (ACTPY), 2-ethyltetrahydropyridine (ETPY) and 2-acetylpyrroline (ACPY)
- <u>How?</u> In the presence of Lysine and ethanol

Biogenic amines = Cadaverine, Putrescine, Histamine,...

 <u>How?</u> Enzymatic decarboxylation of amino acids such as Lysine, Ornitine, Histidine

Geranium = 2-ethoxyhexa-3,5-diene

<u>How?</u> Metabolism of sorbic acid (potassium sorbate)

FIXING WINE FAULTS

LABORATORIES by emartics USA

DETECTION: THE KEY OF PREVENTION

Sampling!

HOW TO DETECT MICROBES?

Detection of microbes = PREVENTION

- Microscope observation
- Plating
- PCR Panel
- Hygiene Control

Monitoring

- PH, VA, FSO₂, 4-EP, 4-EG, tasting
- Every 2 months or monthly
- Monthly QC Panel
- Brett Assessment Panel

PROS AND CONS

	A D		
PROS	FastEasyLow cost	Examine vitalitySpecific groupsLow cost	 Highly specific Sensitive Accurate Detect DNA Detect VNC Rapid
CONS	 Not specific Requires lots of cells Live/Dead differentiation 	 Overgrowth of fungi = false results ~ 7 days Not specific VNC cells not detected 	 Might detect dead cells Cost

THE PROPER USE OF ANTIMICROBIAL AGENTS

ANTIMICROBIAL AGENTS AVAILABLE IN WINEMAKING

Molecular SO₂ > 0.6-0.8 ppm • INHIBITING

- DMDC (Velcorin)
- MAINLY YEAST
- Lysosyme : Enartis Zym Lyso
- ONLY LACTIC ACID BACTERIA

Chitosan: Enartis Stab Micro/Enartis Stab Micro M

WIDE ANTIMICROBIAL SPECTRUM

MOLECULAR SO₂...

Distribution of free SO ₂ at various pH's			s pH's	Free SO ₂ needed to achieve molecular SO ₂ of:		
pН	%S0 ₂	%HSO3-	%SO ₃	0.8 ppm	0.5 ppm	
2.90	7.5	92.5	0.009	1 ppm free	7 ppm free	
2.95	6.6			12	7	
3.00	6.1	93.9	0.012	13	8	
3.05	5.3			15	9	
3.10	4.9	95.1	0.015	16	10	
3.15	4.3			19	12	
3.20	3.9	96.1	0.019	21	13	
3.25	3.4			23	15	
3.30	3.1	96.8	0.024	26	16	
3.35	2.7			29	18	
3.40	2.5	97.5	0.030	32	20	
3.45	2.2			37	23	
3.50	2.0	98.0	0.038	40	25	
3.55	1.8			46	29	
3.60	1.6	98.4	0.048	50	31	
3.65	1.4			57	36	
3.70	1.3	98.7	0.061	63	39	
3.75	1.1			72	45	
3.80	1.0	98.9	.077	79	49	
3.85	0.9			91	57	
3.90	0.8	99.1	0.097	99	62	
3.95	0.7			114	71	
4.00	0.7	99.2	0.122	125	78	

CHITOSAN

<u>Chitosan:</u> De-acetylation of chitin, polysaccharide derived from Aspergillus niger

<u>Enartis Stab Micro (M) : **Pre-activated** chitosan, higher charge, higher contact surface, higher efficiency + yeast hulls</u>

enartís STAB MICRO

<u>Enartis Stab Micro :</u> **Pre-activated** chitosan, higher charge, higher contact surface, higher efficiency

WIDE SPECTRUM ANTIMICROBIAL

WIDE SPECTRUM ANTIMICROBIAL AT ANY

Action on:

Acetobacter, Lactobacillus, Pediococcus, Oenococcus, Brettanomyces, Zygosaccharomyces and some other non-Saccharomyces yeast

Dosage:

- 10-20 g/hL followed by racking to reduce high populations of microbes
- 3-4 g/hL to eliminate small populations before they become spoilage
- Alternative to SO₂ for antimicrobial control

CONTROL FERMENTATIONS AND VA PRODUCTION

PREVENT VA PRODUCTION DURING COLD SOAK AND GRAPE TRANSPORT

enartis

USA

REMOVE FILM YEAST

NO IMPACT ON SACCHAROMYCES FERMENTATION

LIMIT STUCK FERMENTATIONS

ALCOHOLIC FERMENTATION

ALTERNATIVE TO LYSOZYME

CONTROL MLF / ALLERGEN-FREE ALTERNATIVE TO LYSOZYME

No impact on protein stability No interference with colloidal stability Low impact on color Dosage: 5 g/hL to prevent MLF / 10 g/hL to delay MLF / 20 g/hL to stop MLF

REMOVE OFF-FLAVORS

APPLICATIONS

Prevent spoilage microorganisms 2-3 g/hL every racking	Remove spoilage microorganisms 10-20 g/hL	Prevent VA during cold soak or grape transport 5-20 g/hL
Promote clean and safe fermentation 5 g/hL	Improve native fermentation take off	Limit stuck fermentation 5-10 g/hL
Control MLF 5-10 g/hL	Vegan and allergen- free alternative to lysozyme and SO ₂	Remove off-flavors

WHEN TO USE WHICH ANTIMICROBIAL?

	pH, SO2, T°	Enartis Zym Lyso	Enartis Stab Micro M	Enartis Stab Micro	Filtration
Harvest Crush	Х	Х	Х		
Fermentation		Х	Х		
Malolactic Fermentation		Х	Х	Х	
Barrel Aging	Х	Х		Х	Х
Bottling	Х	Х		Х	Х

SOME TIPS FOR PREVENTION

Good cellar hygiene

Monitor critical parameters through entire winemaking process (VA, FSO₂, microscan)

Early detection = prevention = analysis

Use Antimicrobial up front

Fermentation Management (yeast needs)

Manage pH

Check/Taste the lees before lees ageing

Reach Enartis team: (707)-838-6312 Website: <u>www.enartis.com</u> Email: <u>eglantine.chauffour@enartis.com</u>

THANK YOU FOR YOUR ATTENTION

