

Driving Pinot Noir Style through Yeast Selection

Lauren Barrett, Winemaking Specialist

6/25/19

Webinar Formalities

 This Webinar is being recorded and will be published on the Enartis website

enartia

- Please refrain from using the chat box during the presentation, there will be 15 minutes for questions at the end of the presentation
- If you are having technical difficulties please use chat box
 2, Jasha will be there to help

Overview

- Pinot noir Characteristics And Clonal Variation
- Styles
- Pinot noir Phenolic And Aromatic Profile
- Pinot noir Processing
- Enartis Yeast Characteristics in Pinot Noir:
 - Enartis Yeast Range for Pinot noir
 - Main Chemical Parameters
 - Main Aromatic Compounds
 - Conclusion
 - 2019 Harvest Trials: Yeast Selection For Pinot Noir

Citations

Defintions

- Grape variety: A group of morphologically distinct clones originating from a single initial seed which was sexually produced (Boursiquot and This 1999).
- Clone: A select cutting from a parent plant that is vegetatively propagated.
- Genome: An organism complete set of DNA, including all of it genes.
- Genotype: The genetic makeup of an organism. It describes an organism's complete set of genes.
- Phenotype: The collective expression of the genotype in conjunction with the environment on a plant's observable characteristics.

Pinot Noir characteristics and clonal variations:

enartis

Pinot Noir Genome

- Sequenced Dec 2007 (Velasco et al, 2007)
 - 19 Chromosomes
 - Relatively small genome, with high degree of heterozygosity
 - >2 Million single nucleotide polymorphism 87%
- What's the difference?
 - Pinot Noir, Pinot Gris and Pinot Blanc
 - Somatic mutations leading to phenotypic divergence

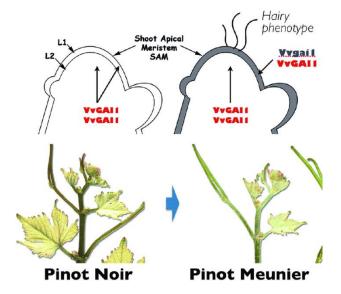


Image from: The Microvine: A Versatile Plant Model to Boost Grapevine Studies in Physiology and Genetics (Pellogrino et al, 2019)

Why so many clones of Pinot Noir?

- The older a variety is, the more mutations it is likely to have
- Mutations may be selected for propagation, with the more mutations a vine has undergone, the more clones it is likely to have.
- Pinot noir is perhaps the oldest cultivated variety of the genus Vitis. It is thought to be the cultivated vine described by Roman authors in the first century

Pinot noir characteristics and clonal variation

Common Pinot noir clones

- Four main groups of Pinot noir clones:
 - Standard quality (pinot fin)
 - Highly fruitful (pinot fructifier)
 - Upright shoots (pinot droit)
 - Loose clustered (mariafeld)
- North American Examples:
 - Pommard Clones (1950s)
 - UCD 4
 - Suit case clones
 - Dijon Clones (~50 registered) (1980's)
 115, 165, 236, 375, 459, 667, 743, 777, and 943
 - Heritage clones:
 - Swan, Martini, Chalone, Mt. Eden

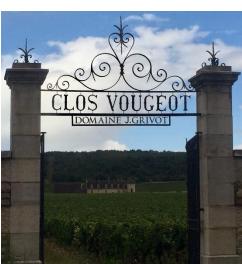
Foundation Plant Services

enartis

https://fps.ucdavis.edu/fgrmain.cfm

Styles

Traditional/Old world


- Tradition, history, culture
- Characteristics: Lower alcohol, less extracted, higher acidity
- Higher portion of stems, whole cluster inclusion
- 18-36 months ageing in barrel
- Yeast isolated from Burgundy (microbial "terroir")
- Challenges: Too thin, reduction, herbal, green, tight

"Old World"

Styles

enartis

New World

- Innovation, technology, marketing
- Characteristics: Higher alcohol, extracted, lower acidity, fruit forward, higher oak
- Increase color and phenolic extraction
- Longer cold soak
- Typically uses new, heavier toast barrels ~12-18 months
- More technological yeast strains (fast fermenters, high aromatic potential)
- Challenges: Too alcoholic, reduction, loss of coloring material

"New World"

- Cryo-maceration
- Thermovinification
- Flash détente
- Microwave treatment
- Pulse Electronic Field
- Ultrasound

(Ana Carew, 2014; Leong et al, 2016)

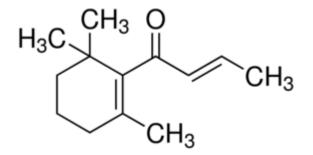
Poll Question:

What style of Pinot noir are you making?

Pinot noir phenolic and aromatic profile

Pinot noir regional aromatic profile

Typical aromas of Burgundy Pinot noir:

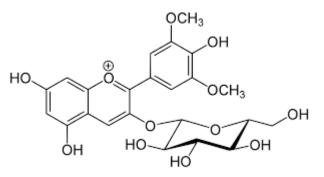

- Ethyl-anthranilate (fruity)
- ethyl-cinnamate (cherry, plum, cinnamon)
- methyl-anthranilate (fruity, grape)
- β-damascenone (floral)

Typical aromas of West Coast Pinot noir

- Total of 42 compounds identified
- 2-phenylethanol (rose petal)
- 3-methyl-1-butanol (nail-polish)
- linalool (floral)
- β-damascenone (floral)

Typical aromas of New Zealand Pinot noir:

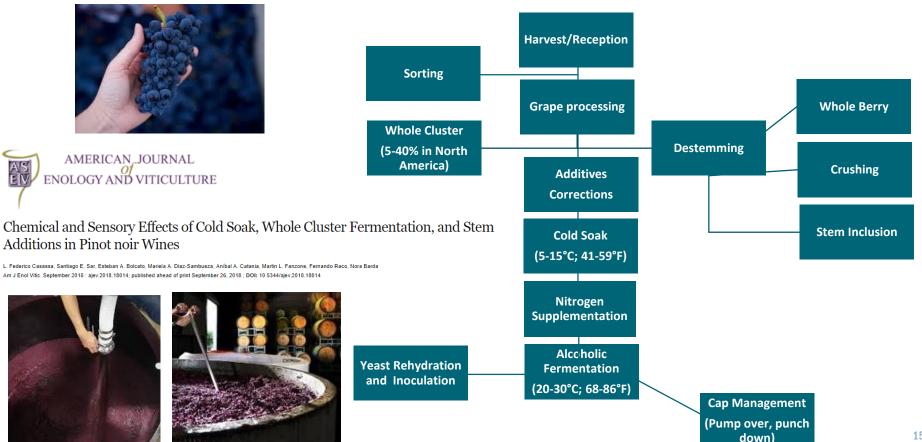
- Ethyl-isobutyrate (strawberry)
- β -damascenone (floral)
- Isovaleric acid (cheese)
- Ethyl-isovalerate (fruit, cherry)
- Ethyl-cinnamate (honey, cinnamon)
- Guaiacol (medicinal, smokey)


β-damascenone (floral) Impact odorant and aroma enhancer

Pinot noir phenolic and aromatic profile

Pinot noir phenolic profile

- Lacks acylated anthocyanins
- Dominant anthocyanin:
 - Malvadin-3-glucoside
 - Poor correlations with co-pigmentation
 - ~100 mg/L in Pinot noir
- High concentration of seed tannins
 - Monomeric flavan-3-ols and low molecular weight tannins
 - Low extractability \rightarrow skin-to-seed ratio



Malvidin-3-glucoside

Pinot noir Processing

enartis

Pinot noir Processing

Logistics and yeast selection considerations

- **Early in the season:** Fast, finishing fermenter, low nutrient requirements
 - Turning tanks

Regional consideration:

- Cool Climate
 - Increase mouthfeel→ High glycerol producing yeast
 - Reduce acidity → malic consuming yeast

Warm climate

- Retaining acidity→ low malic consumption, acidulating yeast
- Reducing alcohol→ Low conversion and high glycerol strains

Fruit health

■ Botrytis or powdery mildew → Robust, low nutrient requiring strains

Enartis Yeast Characteristics in Pinot Noir

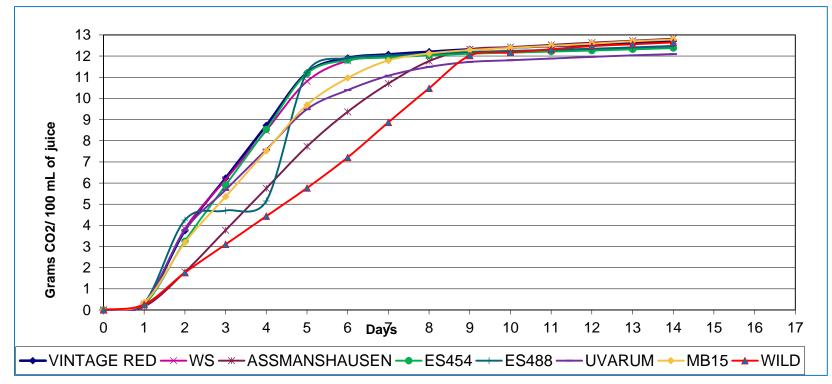
Comparison of commonly used for Pinot noir yeast strains

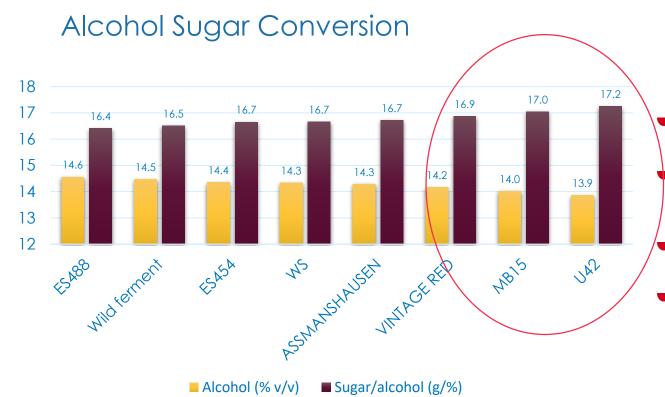
enartis

Pinot noir Fermentation

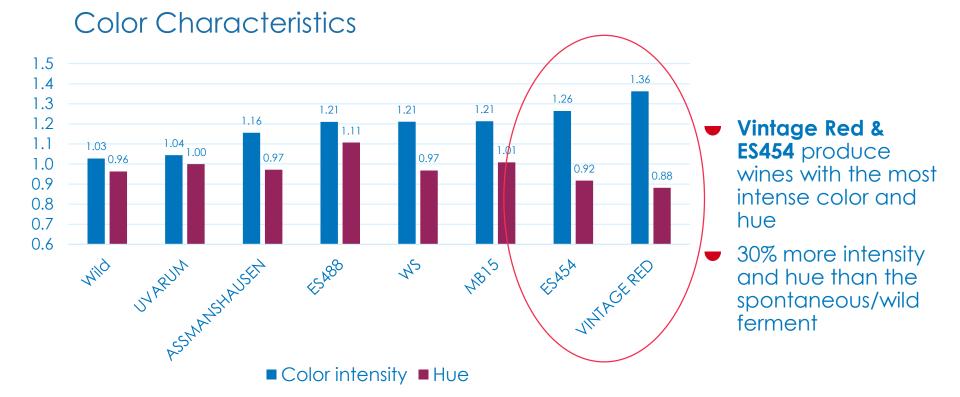
- Grape
 - Alto Adige (North of Italy)
 - Harvest 2017
 - Sugar content: 239 g/L
 - Potential alcohol: 14.3 %
 - pH: 3.74

Vinification process


- Manual destemming and crusher
- Homogenization of the juice
- No SO_2 addition
- No nutrient addition
- Fermentation in flask (170 g of juice)
- Fermentation temperature: 20°C
- Inoculation rate: 2.5x10E6 cells/mL

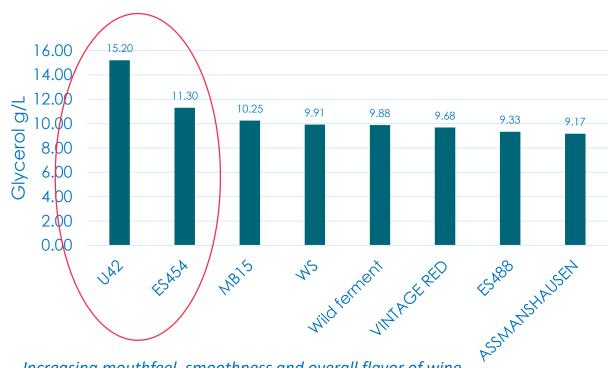

Main chemical parameters

Fermentation Kinetics



- All fermentation went dry
 - Potential alcohol: 14.3%
- Vintage Red & MB15 have a low yield sugar/alcohol (observed in other trials)
- **U42** has the lowest yield sugar/alcohol ratio
- 0.7% Difference in ABV between lowest and highest producing strains

Warm Climate/High potential alcohol: VINTAGE RED, MB15 and U42 application in reducing alcohol concentrations

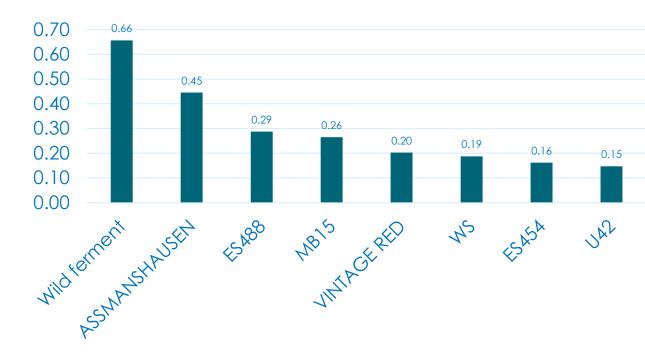


Increasing Color intensity and Hue: VINTAGE RED, and ES 454

(Somers and Evans, 1977)

enartis

Glycerol Production


Increasing mouthfeel, smoothness and overall flavor of wine

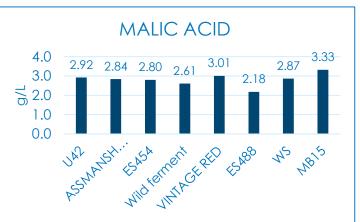
- U42 S. uvarum produced 40% more glyverol than lowest producer
- ES454 high S. cervisiae producer of glycerol
- Positive flavor influenced by glycerol concentrations >10 g/L, especially with low volatile composition

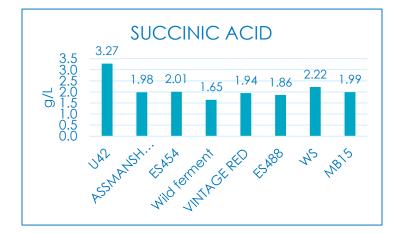

Acetic Acid Production

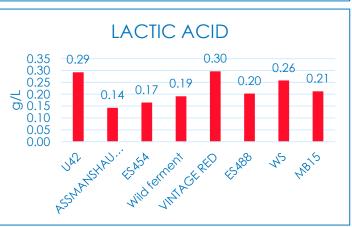
- U42 produces the lowest acetic acid compared to the spontaneous/wild ferment
- Average content in trials 0.29 g/L

Acetaldehyde

- Acetaldehyde helps color stability (see Vintage Red and ES454 color data)
- Vintage Red & MB15 are medium-high producer
- Assmanshausen longer fermentation kinetics and potential oxidation can contribute to high level of acetaldehyde.

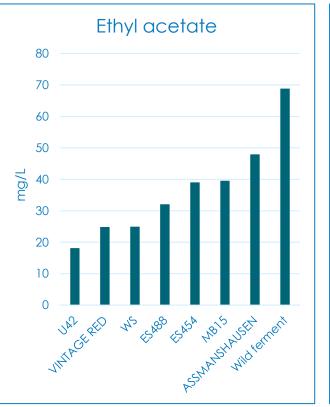


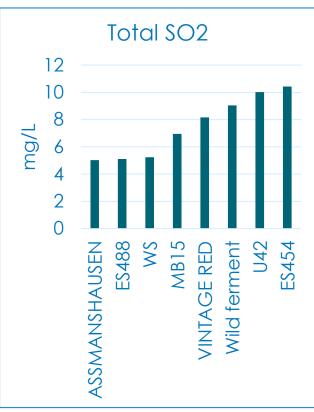

enartis



Yeast Effect On Wine Acidity

- U42 produced highest level of succinic acid
- ES488 consumed the highest level of malic acid





enartis

SO₂ and Ethyl Acetate

- 30-60 mg/L of Ethyl acetate is normal and positive for wine aroma
- Ethyl acetate > 150 mg/L is a defect
- Al strains produced low SO₂ level

Main aromatic compounds

Main Aromatic Compounds

enartis

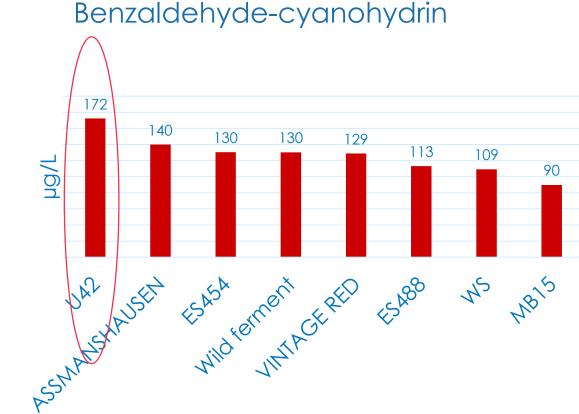
Pinot Noir Main Aromatic Compounds

Floral aroma

- Benzaldehyde
- Linalool
- 2,3-butanediol
- 2-phenylethanol acetate
- 2-phenylethanol
- Ethyl hexanoate
- Hexanoic acid
- Octanoic acid

Fruit aroma

- Benzaldehyde
- Benzaldehyde cyanohydrin
- Ethyl acetate
- Ethyl butyrrate
- Ethyl formate
- Mercaptohexan-1-olo
- Methyl butanoate
- Methyl cinnamate
- Hexanediol
- Ethyl hexanoate
- Ethyl octanoate
- Methyl vanilate
- 3-methyl butanol
- 2,3-butanediol



Main Aromatic Compounds

enartis

- Benzaldehyde-cyanohydrin
 - Cherry aroma
 - Perception threshold ~2,000 µg/L (Rutan et al, 2014)
- Aroma typical of cool-climate Pinot Noir
- U42 produced the highest level, 48% more than MB15

Main Aromatic Compounds

Esters

 Responsible of fruity aroma in young wines

(Sumby et al, 2010)

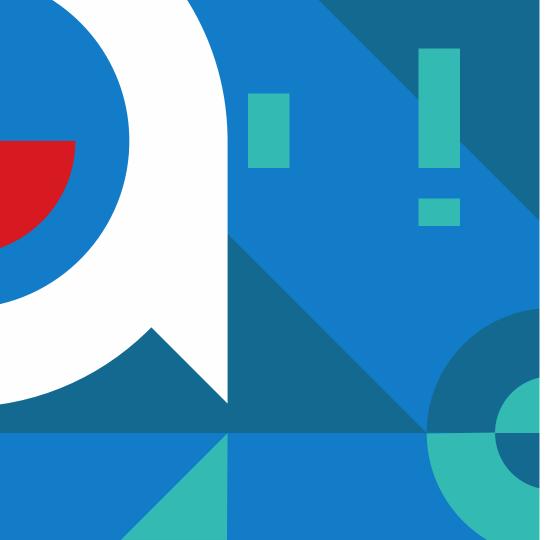
- Ethyl esters of fatty acids are more stable over time than the ester acetates
- Among ester acetates, only isoamyl acetate is above the odor threshold

YEAST STRAINS	ETHYL ESTERS (OAV)	ISOAMYL ACETATE (OAV)	TOTAL ESTERS (OAV)	
Wild ferment	14,11	2,33	16,45	
ASSMANSHAUSEN	22,48	2,04	24,53	
MB15	24,90	1,07	25,97	
U42	26,62	0,95	27,57	
VINTAGE RED	30,23	0,82	31,05	
WS	31,84	1,08	32,92	
E\$454	34,25	0,82	35,07	
ES488	44,82	1,07	45,89	

*Odor Active Value (OAV) = aromatic molecule content / threshold * Ethyl acetate is not part of the sum

ES 454, and ES 488 are good candidates for elaborating young Pinot noirs

Primary Varietal Aromas: Terpens and Nor-isoprenoids Analysis


YEAST STRAINS	<mark>β-Citronelol</mark> (OAV)	β-Damascenone (OAV)	TOTAL (OAV)	
ASSMANSHAUSEN	1,07	16	17,07	
WS	0,80	17,6	18,40	
Wild ferment	0,98	17,6	18,58	
ES488	1,00	19,2	20,20	
U42	0,87	20,8	21,67	
E\$454	0,77	22,4	23,17	
VINTAGE RED	1,03	22,4	23,43	
MB15	1,08	22,4	23,48	

*Odor Active Value (OAV) = aromatic molecule content / threshold

ES 454, Vintage Red, and MB15 showed the highest concentration of varietal derived aroma

Conclusion

Aromatic and Stylistic Objective

FRUITY AROMA	FLORAL AROMA	FRUITY + VARIETAL AROMA	VARIETAL AROMA	COLOR INTENSITY & STABILITY	LESS YIELD IN ALCOHOL
ES454, ES488	U42, WS	VINTAGE RED	MB15, ASSMANHAUSEN	ES454, VINTAGE RED	U42, MB15

Oxygen management

ES454 & **Vintage Red** produce adequate quantities of acetaldehyde, encouraging color condensation without the application of micro-oxygenation.

Conclusion

Enartis Yeast Enological and Stylistic Features

Enological Characteristic	E\$454	E\$488	VINTAGE RED	ASSMANS- HAUSEN	WS	MB15	U42
Aroma profile	FRUITY	FRUITY	FRUITY + VARIETAL	CHERRY	FLORAL	VARIETAL	FLORAL
Fermentation kinetic	Fast	Fast	Fast	Long	Fast	Moderate	Moderate
Glycerol	High	Medium	Medium	Medium	Medium	High	High
Acetic acid	Low	Medium	Low	High	Low	Low	Low
Acetaldehyde	High	Low	High	High	Medium	Medium	Low
Total SO ₂	Low	Low	Low	Low	Low	Low	Low
H ₂ S	1	1	2	1	2	2	0

Glycerol: low < 7; medium 7-10; high > 10

Acetic acid: low < 0.3; medium 0.3-0.5; high > 0.5

Acetaldehyde: low < 40; medium 40-70; high > 70

Total SO₂: low < 20; medium 20-40; high > 40

H₂S: 0=none; 1=low; 2=medium; 3=high

Poll Question: Based on this data, which yeast strain best fits your needs?

Thanks Everyone for Joining! enartis

Inquire about 2019 Harvest trials: Yeast Selection for Pinot noir

Lauren Barrett, Winemaking Specialist Lauren.barrett@enartis.com (707) 508-6786

Driving Pinot Noir Style through Yeast Selection

Citations

- Harbertson JF, Hodgins RE, Thurston LN, Schaffer LJ, Reid MS, Landon JL, Ross CF, Adams 701 DO. 2008. Variability
 of tannin concentration in red wines. Am J Enol Vitic 59:210-214.
- Casassa, L. F., Sari, S. E., Bolcato, E. A., Diaz-Sambueza, M. A., Catania, A. A., Fanzone, M. L., ... & Barda, N. (2019). Chemical and Sensory Effects of Cold Soak, Whole Cluster Fermentation, and Stem Additions in Pinot noir Wines. American Journal of Enology and Viticulture, 70(1), 19-33.
- Carew, A. L., Sparrow, A. M., Curtin, C. D., Close, D. C., & Dambergs, R. G. (2014). Microwave maceration of Pinot Noir grape must: Sanitation and extraction effects and wine phenolics outcomes. Food and bioprocess technology, 7(4), 954-963.
- Fang Y, Qian M. 2005. Aroma compounds in Oregon Pinot noir wine determined by aroma extract 684 dilution analysis (AEDA). Flavour Fragr J 20:22-29.
- Harbertson JF, Hodgins RE, Thurston LN, Schaffer LJ, Reid MS, Landon JL, Ross CF, Adams 701 DO. 2008. Variability
 of tannin concentration in red wines. Am J Enol Vitic 59:210-214.
- Leong, S. Y., Burritt, D. J., & Oey, I. (2016). Evaluation of the anthocyanin release and health-promoting properties of Pinot Noir grape juices after pulsed electric fields. Food Chemistry, 196, 833-841.
- Pellegrino, A., Romieu, C., Rienth, M., & Torregrosa, L. (2019). The Microvine: A Versatile Plant Model to Boost Grapevine Studies in Physiology and Genetics. In Advances in grape and wine biotechnology. IntechOpen.
- Rutan T, Herbst-Johnstone M, Pineau B, Kilmartin PA. (2014). Characterization of the aroma of 744 Central Otago Pinot noir wines using sensory reconstitution studies. Am J Enol Vitic 65:424-434.
- Sumby, K.M.; Grbin, P.R.; Jiranek, V. Microbial modulation of aromatic esters in wine: Current knowledge and future prospects. Food Chem. 2010, 121, 1–16.