

enartis

Proactive Protein Stabilization

Jasha Karasek
Winemaking Specialist, Enartis USA

6-11-2019

- Background/review
- Trends for vintages
- Factors for vintage variability
- Bentonite additions pre/post fermentation
- Some enological tools
- New things on the horizon

Overview

 Formation of protein haze in wine, either by denaturation from heat, or induced by ethanol over time (Pocock et al., 2003)

Why focus on protein stabilization?

- Several winemakers have reported unusually high amounts of bentonite required for stabilization of proteins for the 2018 vintage

Protein Stability vs. Vintage

■ #s bentonite /1000 gals to stabilize...

- What affects wine protein instability levels?
 - Variety: Sauv. blanc, Semillon, Pinot Gris (Grigio), Grüner Veltliner
 - Vintage:
 - PR proteins (pathogenesis related proteins) sub group called Thaumatin and Chitinase proteins, related to vine stress (Marangon et al., 2010c; Marangon et al., 2011b).
 - Warmer climate = more protein instability (Salazar 2012)
 - Related to wind, water, and salts stress = more unstable
 - Related to botrytis and powdery mildew or other pathogen pressures
 - Winemaking:
 - Fermentation temperature, higher temp = less PR proteins (Ndlovu et al. 2019)
 - Use of enzymes, tannins, mannoproteins etc.

Bentonite effects on wine:

- Removes beneficial mannoproteins (Rodriguez 2012)
- Decreases terpenes, C13-norisoprenoids, C6 alcohols, ethyl esters, acetates, and thiols (Moio et al. 2004, Armada and Falque 2007, Baiano et al. 2012, Vela et al. 2012).
- Lose wine volume
- Addition of metals Na, Ca

Which is best from a total bentonite addition perspective?

- Some authors have reported that the use of bentonite in juice/must is more efficient and reduces loss of aromatic compounds (Lambri et al. 2012).
- Others have reported that the best time to add bentonite is during fermentation, because a minimal amount is required and the concomitant removal of aromatic compounds is apparently lower (Miller et al. 1985, Pocock et al. 2011, Lira et al. 2015).
- Some authors bentonite additions are more efficient in the finished wine (Somers and Ziemelis 1973, Puig-Deu et al. 1999).

Bentonite effect during fermentation in thiolic varieties:

For thiols content:

- Changes thiolic varieties like SB
- Should supplement musts with precursors or preservative treatments

Eduardo Vela, ¹ Purificación Hernández-Orte, ¹ Eva Castro, ¹ Vicente Ferreira, ¹ and Ricardo Lopez ¹*

Effect of Bentonite on Wine Aroma

Am. J. Enol. Vitic. 68:1 (2017)

Figure 1 Contents of 3-mercaptohexan-1-ol (3MH), 3-mercaptohexyl acetate (3MHA), 4-mercapto-4-methylpentan-2-one (4M4M2P), 2-furfurylthiol (FFT), benzyl mercaptan (BM), and 2-methyl-3-furanthiol (MFT) (expressed as ng/L of FFT) for wine control, treated with bentonite during fermentation (Must fining) and after fermentation (Wine fining) from vintages 2014 and 2015. Values are averages of independent vinifications (n = 2), error bars are two standard deviations. n = 2, c. Different letters indicate mean is significantly different among samples at p < 0.05 by Duncan's test after a statistically significant one-way ANOVA.

Tan Skin for recovery of thiolic aromas

Selected for its high content of 3-S-glutathionyl mercaptohexan-1-ol and 3-S-cysteinyl mercaptohexan-1-ol precursors when compared among other commercial grape tannins

High MW grape skin tannin

Table 1: Thiols content of wines split by cultivar vs treatment (tannin addition at juice stage)

	Control	Tannin	Enartis Tan Skin
		low precursor content	high precursor content
Gewürztraminer	Mean (n = 6)	Mean $(n = 6)$	Mean $(n = 6)$
3MH (ng L-1)	195	175	558
3MHA (ng L-1)	5	5	20
Sauvignon Blanc	Mean (n = 6)	Mean (n = 6)	Mean $(n = 6)$
3MH (ng L-1)	642	536	1168
3MHA (ng L-1)	67	45	114

Results extracted from "Importance of polyfunctional thiols on semi industrial Gewürztraminer wines and the correlation to technological treatments", T. Roman et al., Eur Food Res Technol (2017)

Protein binding and removal

Dosages and timing of application

- Applied to juice in tank at 5-10 g/hL dissolved in 10x water.
- Be sure not to add this adjacent to enzyme addition in concentrated form...

Pectinase, Cellulase and Hemicellulase, Protease

- Easier to clarify musts
- More aromas released
- Cuts up proteins into smaller pieces

Effectiveness of Arom MP

Reduces bentonite requirements up to 40%

Dosages and timing of application

- Applied to grapes at 20 40 g/ton dissolved in 10x water or juice at 2 – 4 g/hL dissolved in 10x water
- Use higher dosage if low pH (<3.2) and low temp (<10 C)
- Allow 2 3 hours (minimum) for enzyme to work

Yeast hulls with immediately available mannoproteins

- Mannoproteins have been shown to have a stabilizing effect on heat unstable proteins (Ribeiro 2016, Dupin et al., 2000a, Gonzalez-Ramos et al. 2009)
- Other Benefits: Pro Uno increases wine length and mid palate

How it's applied and Dosages

Pro Uno is dissolved in 10x water at 20 g/hL and added to the tank and mixed well into the juice. It can be added just at the onset of fermentation if there is sufficient natural mixing.

Proactive Protein Stabilization

- Reducing unstable proteins from the start of the process
- Improving quality along the way
- Three products which will reduce bentonite additions:

Just how much money will it cost a winemaker to do this protocol?

- At <u>retail</u> cost of the product:
- Zym Arom MP = @ 54\$ for 250 g and 4 g/hL = 4 c/Gallon
- Tan Skin = @ 425\$ for 1 kg and 10 g/hL = 16 c/Gallon
- Pro Uno = @ 154\$ for 1 kg and 20 g/hL = 11 c/Gallon

Total cost for protocol: 0.31 \$ /Gallon

Compare to treatment with bentolit super: @ 3.25\$ for 1 kg Dosage is 50 g/hL = .006 \$ / Gallon

Non-Sacc. Yeast derivatives for protein stabilization

Protection of wine from protein haze using Schizosaccharomyces japonicus glycoproteins

Simone Ignesti¹, Bruno Zanoni¹, Paola Domizio^{1*}

^{1*} Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Via Donizetti 6, 50144 Firenze

