

Microbial Stability and Control:

EnartisStab Micro (Chitosan) Application during Wine Maturation

Lauren Barrett, Winemaking Specialist

2/25/2019

Webinar Formalities

enartis

- 40 min presentation
- Please leave questions for designated Q&A at end of the presentation, please avoid using the chat box
- Whitney is here to help
- If you are bothered by the chat box, you can toggle it closed
- We recommend using Chrome web browser. We heard negative feedback regarding Microsoft Edge
- If you are having audio issues, you can call in. Details in the chat panel
- Recorded session!

ZENITH (KPA) COLD STABILITY WEBINAR THIS FRIDAY, FEBRUARY 28th APPROVED BY THE TTB § 24.250

Outline

- Microbial Control
- Enological Application of Chitosan
- Antimicrobial Activity of Chitosan
- EnartisStab Micro M and EnartisStab Micro
- Winemaking Stage and Application of EnartisStab Micro
- Enartis Trial Results
- **–** Q&A
- Citations

Microbial Control

Wine Microbial Spoilage During Maturation

- Malolactic Bacteria
 - Lactobacillus
 - Pediococcus
- Yeast
 - Brettanomyces bruxellensis
 - Zygosaccharomyces bailii
 - Saccharomycodes ludwigii
- Acetic acid bacteria
 - Acetobacter
 - Gluconobacter

Time during vinification

General growth of **(A) non-Saccharomyces**, **(B) Saccharomyces**, **(C) Oenococcus oeni** and **(D) spoilage yeast and bacteria** during vinification. Extracted from (Fugelsang and Edwards, 2006) 4

Microbial Control

enartis

Sulfur Dioxide SO₂

- The persistent use of SO₂, has encouraged select spoilage yeast resistance (Divol et al, 2012)
 - B. bruxellensis
 - Saccharomycodes Iudwigii
 - Z. bailii (Escott et al, 2017)
- B. bruxellensis demonstrates a strong niche adaptation to SO₂
 - Increased incidence of resistant strains (Avramova et al, 2019)
- B. bruxellensis can enter a viable-non-culturable (VBNC) state
 - Metabolism is maintained in VBNC state
 - Production and release of volatile phenols

Microbial Control

Other Microbial Control Tools

- Approved Additives:
 - Lysozyme
 - Sorbic acid
 - Fumaric acid
 - DMDC (dimethyldicarbonate)
 - Chitosan
- Technologies:
 - Hydrostatic pressure
 - Ultrasonics
 - Microwave
 - Pasteurization
 - Pulsed light irradiation

What is Chitosan?

- Hydrophilic, biocompatible polymer derived from de-acetylated Chitin.
- Sourced from the mycelium/biomass of Aspergillus niger.
- Applications in food science, waste water treatment, agriculture and the medical industry.

Chitin

Enological Application of Chitosan

Chitosan's Enological Application

- Reducing microbial loads:
 - OIV & TTB (§ 24.250) 10 g/hL
- Fining:
 - OIV 100 g/hL
 - Chitin-glucan TTB (§ 24.250) 500g/hL
- Ochratoxine A:
 - OIV 500 g/hL
- Iron, lead, cadmium and copper:
 OIV 100 g/hL

Properties of Chitosan (β -1,4-d-glucosamine)

- High density of reactive amino groups and hydroxyl groups lend to its bioactivity.
- Its degree of acetylation (DD) and molecular weight (MW) determine its functional property and bioactive attributes.
- Lower MW and higher DD chitosan have increased antimicrobial properties.
- At wine pH, chitosan has a positive charge reacting with negatively charged components in wine.

OH

OH

enartis

10

enartis

Different molecular processes that may contribute to the antimicrobial activity of chitosan

- Interaction with negatively charged cell wall or cell wall components.
- Alterations to membrane permeability and energy pathways.
- Cell aggregation and physical removal through fining.
- Possible diffusion of low MW fractions through the cell wall and membrane.
- Negatively charged nutrient secretion.

enartis

Gram-positive bacteria

Oenococcus, Pediococcus, and Lactobacillus

Gram-negative bacteria

Acetobacter and Glucanobacter

EnartisStab Micro vs. Other Chitosan Based Products

- The only enological chitosan with acid pre-activation step
- Increased reactivity and polymer surface area
- Increased charge
- Increase solubility
- Superior antimicrobial activity

enartis

EnartisStab Micro and EnartisStab Micro M

EnartisStab Micro M Technical Data Sheet

Preparation of chitosan (50%) produced from Aspergillus niger, purified yeast hulls (50%), with organic acids (ascorbic and lactic acid).

- Prevent VA during cold soak or grape transport: 5-20 g/hL
- Remove spoilage microorganisms: 10-20 g/hL
- Control malolactic fermentation: 5-10 g/hL
- Prevent Stuck fermentation: 5-10 g/hL
- Vegan and allergen free alternative to lysozyme and Sulfur dioxide

STABILIZING AGENT STABILIZZANTI
Enartis Stab
MICRO M

Maximum legal dosage of Stab Micro M in US: 20 g/hL 📭 🏹

EnartisStab Micro Technical Data Sheet

Preparation of pre-activated chitosan from Aspergillus niger and organic acids (citric, lactic and ascorbic acid).

- Prevent and reduce unwanted microorganisms.
- Reduce risk of microbial growth in unfiltered bottled wines.
- Delay/avoid malolactic fermentation: an allergen free alternative to lysozyme.
- Improve clarification and filterability.
- Reduce off-flavors produced by spoilage microorganisms.
- DOSAGE: 2-15 g/hL
 - PREVENTITIVE: 3-5 g/hL during each transfer, racking or any wine movement.
 - CURATIVE: 10-15 g/hL

Maximum legal dosage of Stab Micro in US: 15 g/hL

STABILIZING AGENT

STABILIZZANTI

Enartis Stab

MICRO

EnartisStab Micro M vs. EnartisStab Micro

Microbial Ecology During Vinification

Winemaking Phase	EnartisStab Micro M	EnartisStab Micro
Harvest Crush	Х	
Flotation/Cold Settling	х	х
Fermentation	х	
Malolactic Fermentation	х	х
Barrel Aging		Х
Bottling		Х

General growth of (A) non-Saccharomyces, (B) Saccharomyces, (C) Oenococcus oeni and (D) spoilage yeast and bacteria during vinification. Extracted from (Fugelsang and Edwards, 2006)

enartis

Enartis Trial Results

Commercial Trials vs. Lab Scale

Applications of EnartisStab Micro During Maturation

- Control in laboratory vs. control in winery
- On going winery scale applications utilizing extended contact and resuspension techniques
- Inspired by multiple studies examining the impact of chitosan on Brettanomyces and maturation spoilage organisms during barrel ageing

(Valera et al, 2017; Nardi et al, 2014; Taillandier et al, 2015)

enartis

Enartis Trials

Experimental Design

- Objective is to prevent malolactic bacteria spoilage during maturation and preserve acidity.
- Cultures were pulled from Vinquiry Labs culture collection and acclimatized prior to inoculation:
 - B021 Lactobacillus plantarum
 - B001 Oenococcus oeni
 - B025 Pediococcus parvulus
- Previous studies examining effect of chitosan on Brettanomyces in red wine during maturation.
 - (Valera et al, 2017; Nardi et al, 2014; Taillandier et al, 2015)

Sterile filtered 2019 Alexander Valley Chardonnay

Analysis	Method	Result	Unit
Alcohol	GC	13.58	%V/V
рН	Autotitrator	3.50	
Titratable Acidity	Autotitrator	0.641	g/100mL
Free SO2	Segmented Flow	<]	mg/L
Total SO2	Segmented Flow	10	mg/L
Molecular SO2	Calculation	<0.01	mg/L
Glucose + Fructose	Enzymatic	46	mg/100mL
Malic Acid	Enzymatic	0.260	g/100mL
Lactic Acid	HPLC	0.026	g/100mL
Acetic Acid	HPLC	0.024	g/100mL

Enartis Trials

enartis

Experimental Design

- Treatment Monitoring:
 - Treatments and controls were stirred at 400 rpm for 30 seconds, once every two weeks and sampled with EnartisStab Micro in suspension.
 - Vinquiry Lab Analysis:
 - Bi-weekly metabolite tracking: Lactic, acetic, and malic acid.
 - After 2 months: Plating/viability, CIE lab, oxidative stability, organic acids and protein stability.

RT-PCR Initial Microbial Populations

Samples	PCR for Lactobacillaceae	PCR for Oenococcus	PCR for Pediococcus	Units
Control-1	1.88E+06	9.45E+09	3.84E+05	cells/mL
Control-2	1.61E+06	9.09E+09	2.84E+05	cells/mL
Control-3	1.43E+06	9.22E+09	2.67E+05	cells/mL
ML1a	1.18E+06	7.56E+09	2.07E+05	cells/mL
ML1b	9.85E+05	7.27E+09	1.86E+05	cells/mL
ML1C	1.15E+06	8.35E+09	2.25E+05	cells/mL

- Samples were submitted to Vinquiry Labs 12-hours after inoculation.
 - Plating results showed mixed malolactic bacteria colonies to numerous to count across all modalities.

enartis

Malic Acid Consumption

Malic Acid

 After 3 weeks the control samples were malic dry while the EnartisStab Micro treatment maintained malic acid.

PRESERVED ACIDITY

Metabolite Data

Lactic Acid Production

Lactic Acid

NO MALOLACTIC FERMENTATION

enartis

Acetic Acid Production

 Treatment with EnartisStab Micro at 8 g/hL significantly reduced the increase of acetic acid.

LOWER VOLATILE ACIDITY

Microbial Plating

Treatments	Plating Results (CFU/mL)	Bacteria Observed
Control-1	>3.0E4	Oenococcus
Control-2	>3.0E4	Oenococcus
Control-3	>3.0E4	Oenococcus
ML1a	ND	Malolactic bacteria
ML1b	ND	Malolactic bacteria
ML1C	ND	Malolactic bacteria

 Significant effect on malolactic bacteria viability comparing EnartisStab Micro treatments vs. controls.

0

Control-1

Control-2

Control-3

- Significantly increased heat stability with EnartisStab Micro treatments.
- Lower bentonite addition.
- Improved organoleptic qualities.

ML1a

ML1b

ML1C

enartis

Additional Observations and Benefits

enartis

Oxidative Stability and CIE Lab Results

 Significant effect on oxidative stability and browning from EnartisStab Micro treatment vs. control.

Treatments	420 nm abs	Result
Control-1	0.174	Unstable
Control-2	0.179	Unstable
Control-3	0.176	Unstable
ML1a	0.127	Stable
ML1b	0.87	Stable
ML1c	0.144	Stable

(lland et al, 1993)

Treatments	CIE Color Differences (Δ E)
Control 1- ML1a	5.29
Control 2 - ML1b	5.80
Control 3 - ML1c	6.18

• CIE Color Differences ΔE :

2.0 - 10.0 Perceptible at a glance.

29

Other Industrial Applications

Immunoadjuvant Anticancer Biodegradable Non-toxic Fungistatic Biocompatible Osteoblast-stimulation Antibacterial Medical Anti-cholesteremic Hemostatic Bio-ethanol Food **S**permicidal **Fining** Antitumor Waste-water

What can't chitosan do!!!!

Other Products

- Claril QY: Phenolic and off flavor fining with autolyzed yeast and chitosan
- Claril ZR: Vegan fining agent from plant protein, chitosan, and bentonite.
 - Preparing red wine for Zenith Color
- Claril ZW: Vegan fining agent from plant protein , chitosan, and sodium activated bentonite.
 - Preparing white wine for Zenith Uno
- Claril HM: PVIPVP and pre-activated Chitosan for heavy metal removal and prevention of browning/oxidation.

Fining and Clarification Webinar Summer 2020

- self-brett™: A compact diagnosis kit that allows winemakers to analyze for Brettanomyces independently of a laboratory or more expensive analytical techniques.
 - Anecdotal, affordable diagnostic tool without the requirement of specialized equipment.
 - Price: \$20.00
 - Turnaround time: 7-10 days

Enartis 2020 Handbook download:

https://www.enartis.com/wpcontent/uploads/2019/04/Enartis-Handbook-2020.pdf

enartis

15 minute Q&A

Citations

enartis

- Abdel-Gawad, K. M., Hifney, A. F., Fawzy, M. A., & Gomaa, M. (2017). Technology optimization of chitosan production from Aspergillus niger biomass and its functional activities. Food hydrocolloids, 63, 593-601.
- Anwar, M. I., Muhammad, F., Awais, M. M., & Akhtar, M. (2017). A review of β-glucans as a growth promoter and antibiotic alternative against enteric pathogens in poultry. World's Poultry Science Journal, 73(3), 651-661.
- Avramova, M., Grbin, P., Borneman, A., Albertin, W., Masneuf-Pomarède, I., & Varela, C. (2019). Competition experiments between Brettanomyces bruxellensis strains reveal specific adaptation to sulfur dioxide and complex interactions at intraspecies level. FEMS yeast research, 19(3), foz010.
- Brasselet, C., Guillaume, P., Dubessay, P., Dols-Lafargue, M., Coulon, J., Maupeu, J., & Delattre, C. (2019). Modification
 of chitosan: How generating new functional derivatives?.
- Divol, B., du Toit, M., & Duckitt, E. (2012). Surviving in the presence of sulphur dioxide: strategies developed by wine yeasts. Applied microbiology and biotechnology, 95(3), 601-613.
- Dutta, P. K., Dutta, J., & Tripathi, V. S. (2004). Chitin and chitosan: Chemistry, properties and applications.
- Elmacı, S. B., Gülgör, G., Tokatlı, M., Erten, H., İşci, A., & Özçelik, F. (2015). Effectiveness of chitosan against wine-related microorganisms. Antonie Van Leeuwenhoek, 107(3), 675-686.
- Escott, C., Loira, I., Morata, A., Bañuelos, M. A., & Suárez-Lepe, J. A. (2017). Wine spoilage yeasts: Control strategy. Yeast-Industrial Applications, 89-116.
- Iland, P., Ewart, A., & Sitters, J. (1993). Techniques for chemical analysis and stability tests of grape juice and wine. Patrick Iland Wine Promotions.
- Nardi, T., Vagnoli, P., Minacci, A., Gautier, S., & Sieczkowski, N. (2014). Evaluating the impact of a fungal-origin chitosan preparation on Brettanomyces bruxellensis in the context of wine aging. Wine Studies, 3(1).
- Taillandier, P., Joannis-Cassan, C., Jentzer, J. B., Gautier, S., Sieczkowski, N., Granes, D., & Brandam, C. (2015). Effect of a fungal chitosan preparation on Brettanomyces bruxellensis, a wine contaminant. Journal of applied microbiology, 118(1), 123-131.
- Valera, M. J., Sainz, F., Mas, A., & Torija, M. J. (2017). Effect of chitosan and SO2 on viability of Acetobacter strains in wine. International journal of food microbiology, 246, 1-4.

enartis

Lauren Barrett, Winemaking Specialist Lauren.barrett@enartis.com

