Inspiring innovation.

ADDITION OF SULFUR DIOXIDE
 using a solution of sulfur dooxid in water

Some winemakers choose to use solutions of sulfur dioxide in water for additions. The solutions are created by bubbling gaseous SO_{2} into a measured volume of chilled water or by the direct addition of liquid SO_{2}, creating a saturated solution of $\mathrm{SO}_{2}-\mathrm{H}_{2} \mathrm{O}$. This is not the same as creating a solution by dissolving potassium metabisulfite in water. At $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$ the solubility of SO 2 in water is 11.28% by weight.
(a) Prepare a solution of $\mathrm{SO}_{2}-\mathrm{H}_{2} \mathrm{O}$ in a well-ventilated area using appropriate safety measures. In cold water, solutions of 6-8\% are readily produced.
(b) Using the data in the following table ${ }^{1}$ you can plot concentration of $\mathrm{SO}_{2} \mathrm{vs}$. specific gravity at various temperatures. Please note that this chart is not accurate for aqueous solutions of potassium metabisulfite because of the density contribution of the cations.

SO_{2} Concentration $(\% \mathrm{wt} / \mathrm{vol})$	Specific Gravity at		
1.0	1.004	$20^{\circ} \mathrm{C}\left(69^{\circ} \mathrm{F}\right)$	1.003
2.0	1.009	1.008	1.000
3.0	1.014	1.013	1.005
4.0	1.020	1.018	1.010
5.0	1.025	1.023	1.014
6.0	1.030	1.028	1.019
7.0	1.035	1.032	1.024
8.0	1.040	1.037	1.028

(c) Using the chart or plot from (b) above and a specific gravity hydrometer, determine the SO2 concentration of the solution. For example, a reading of 1.028 at $20^{\circ} \mathrm{C}$ corresponds to a concentration of 6.0% ($60 \mathrm{~g} / \mathrm{L}$ or $60,000 \mathrm{mg} / \mathrm{L}$).
(d) Additions can then be calculated using the following formula:
$\frac{\text { desired addition in } \mathrm{ppm} \times \text { volume in gallons } \times 3.785 \mathrm{~L} / \mathrm{gal}}{\mathrm{SO}_{2} \text { solution concentration in } \mathrm{g} / \mathrm{L}}=\underset{\text { milliliters }}{\text { addition in }}$
For example, the volume of 6% solution needed for a $10 \mathrm{ppm}(\mathrm{mg} / \mathrm{L}$) addition to $1,000 \mathrm{gallons}$ (or 37.85 hL) of wine is 630 mL .

[^0]
[^0]: ${ }^{1}$ Source of data: Willson et al. (1943). "Liquid sulfur dioxide in the fruit industries." Fruit Prod. J. 23:72-82.

