

In collaboration with

CornellCALS

College of Agriculture and Life Sciences

Canned Wine Part 2: New Information on the Impact of SO₂ for Canned Beverages

Moderator: Rachel Allison Presenters: Dr. Gavin Sacks & Jasha Karasek

DATE 6/18/20

Cornelicals College of Agriculture and Life Sciences

Survey Questions

SO₂ and Canned Wine

Gavin L. Sacks (Professor) Rachel Allison (PhD Candidate)

Department of Food Science Cornell University

June 18, 2020

The questions you probably care about.

"What can liner / manufacturer should I use?" "What wine components are most important?" "What shelf-life can I get?"

I'll be explaining how we hope to get to these answers

The fastest growing wine packaging sector Wine in aluminum cans

High recycling rates Good barrier properties Lightweight, strong Less emissions impact

3

Convenient

Sacks and Allison / Enartis-Cornell Seminar on Canned Wine

Anatomy of a can: Really, it's a plastic bottle (with super thin walls, and a hermetic seal)

College of Agriculture and Life Sciences Sacks and Allison / Enartis-Cornell Seminar on Canned Wine

Effects of packaging on flavor – the big "textbook" categories

- DEGRADATION Flavor changes due to ordinary processes, e.g. oxidation For cans: Oxidation not a big deal *unless* there is high total package oxygen (especially headspace)
- 2. SCALPING Loss of desirable compounds by absorption For cans: Will affect highly non-polar compounds, e.g. TCA. Probably minor concern
- 3. TAINTING Flavor changes due to sorption from or reaction with packaging

For cans: a potential issue . . . <u>Next slides!</u>

Tainting of canned wines (and ciders) Hydrogen sulfide, H₂S: "rotten egg" odor

(12)

 (45) Date of publication and mention of the grant of the patent: 14.11.2018 Bulletin 2018/46

- (21) Application number: 14167862.3
- (22) Date of filing: 26.03.2012
- (54) WINE PACKAGED IN ALUMINIUM CONTAINERS

"This invention is in part based on the discovery that еигореан excess levels of Free SO₂ will also affect the nose (odour-sulphidic characters)"

No.

butterstock.com - 101892667

Foul odor spurs Oliver Winery hard-cider lawsuit

KEYWORDS LEGAL ISSUES / LAWSUITS / MANUFACTURERS / FOOD MANUFACTURERS / REGIONAL NEWS / LAW / MANUFACTURING RECEIVE IBJ NEWS IN YOUR INBOX CONMENTS A PRINT f 😏 in 🖂 🕂 Sign up for FREE Your email address ELATED NEWS AND OPINIOR An agreement Oliver Wine Co. Inc. made with a container manufacturer to purchase cans for the winery's hard apple cider has cone sour Former worker files federal suit against ASI Bloomington-based Oliver filed suit against the Broomfield, Colo.-based Ball Metal Beverage Container Corp., once February 17, 2012 headquartered in Muncie, in Monroe Circuit Court in December. The case was transferred to federal court in Indianapolis last week Hostess, union unsuccessful in court-Oliver claims the metal cans Ball supplied for the cider produced a chemical reaction when coming into contact with the beverage, causing a foul odor and spurring customer complaints. ordered mediation November 20, 2012 The winery issued a voluntary recall of the cider and since has suffered "significant damages," according to its complaint Tiny Lebanon firm Oliver does not specify the amount of damages it is seeking. The price Oliver paid to buy a total of 1.3 million cans from prevails in multimillion Ball has been redacted from a purchase order included in the complaint. dollar patent case June 22, 2013 The winery is claiming breach of warranties and contract, negligence and product liability Cummins sues T-shirl Citing company policy, a Ball spokesman declined to comment on the pending litigation. CONCERCION AND INCOLOUR and Life Sciences

Model wine (50 mg/L SO₂, pH=3.5) in commercial cans (10 days @ 30° C)

6

Allison, et al Appellation Cornell, 2020

Aside: Our approach to measuring H₂S

- Modified A-O unit, with H₂S gas detection tubes
- <15 min/analysis

Cornell CALS

~0.2 ppb detection limit

Sources of H₂S during anoxic storage in cans

 1) Release from odorless precursors

 a) Copper-sulfide complexes
 (see presentations from Wilkes and Scrimgeour in earlier Enartis webinar)
 b) Polysulfides (from wine oxidation or S-pesticide degradation)

Sources of H₂S during anoxic storage in cans

WineAluminum H_2S +Image: Comparison of the second s

 Release from odorless precursors

 a) Copper-sulfide complexes
 (see presentations from Wilkes and Scrimgeour in earlier Enartis webinar)
 b) Polysulfides (from wine oxidation or S-pesticide degradation)

2) New formation of H₂S by reaction of aluminum with SO₂

Aluminum will corrode under aqueous conditions Will also react with SO₂ to yield H₂S

50 mg/L SO₂, Al foil, neutral pH, 24 h 40 H₂S evolved (µg/L) 30 20 10 0 No SO₂ With SO₂ A "blister" formed on aluminum surface at neutral pH

(dissolves at wine pH)

Aluminum and its alloys react with SO₂ to yield H₂S

Cornell**CALS**

Review of SO₂ in wine *(sorry, we need to do this)*: free vs. molecular vs. bound vs. total

Molecular SO₂ is a minor component of free SO₂, typically ~1-2% Higher molecular SO₂ proportions at lower pH

These different forms of sulfur dioxide (SO₂) have different, complementary roles in a packaged wine

1) Molecular SO₂ is an **antimicrobial**

Typically, **0.5-0.8 mg/L molecular** SO₂ recommended to prevent spoilage

2) Free SO₂ (as bisulfite) is an **antioxidant**

~30 mg/L **free** SO₂ common recommendation for glass packaging Reacts with oxidation products (e.g. hydrogen peroxide, quinones) Typically, at **<10 mg/L free** SO₂, oxidized aromas appear

"Bound" SO₂ – What's doing the binding? A partial list of binder

Sacks and Allison / Enartis-Cornell Seminar on Canned Wines

As Free SO₂ decreases, release of SO₂ from bound forms is favored, and wines take on oxidized character

College of Agriculture and Life Sciences Sacks and Allison / Enartis-Cornell Seminar on Canned Wines

Limiting SO₂ in canned wine makes sense, but the unique role of SO₂ as an antioxidant makes elimination challenging

1) Molecular SO₂ as an antimicrobial

There are other options! You don't need SO₂ to prevent spoilage! DMDC, sterile filter, pasteurization (yikes?), and more

2) Free SO₂ (as bisulfite) as an antioxidant

There are a lack of options for eliminating SO₂'s role as an antioxidant We do not (yet) have an alternative rapid scavenger for hydrogen peroxide We do not (yet) have an alternative strategy for binding aldehydic off-aromas

The dependence on molecular SO2 may explain lack of H2S reported in canned red wines

H₂S *sometimes* found in canned white and rosé wines

and Life Sciences

The dependence on molecular SO2 may explain lack of H2S reported in canned red wines

H₂S *sometimes* found in canned white and rosé wines

H₂S is **rare** in canned reds

Lower molecular due to higher pH?

But there's more!

Conventional SO₂ methods (A-O, Ripper, FIA) overestimate free and molecular SO₂ in reds

Why? Dilution and acidification steps of these methods release anthocyanins

Coelho, Howe, and Sacks, AJEV 2015

Cornell**CALS**

College of Agriculture and Life Sciences

The "true" molecular SO_2 of your red wine is ~70% lower than what your data sheet says!

Which form of SO₂ (Bisulfite? Molecular?) is involved?

And how do they get through the can liner and passive alumina layer?

Al₂O₃

A

And the form of SO₂ likely matters

- Does it pass through imperfections/holes (more likely bisulfite)?
- Does it diffuse directly through the liner or (more likely molecular SO₂)

Preliminary work: molecular SO₂ (and diffusion) is probably more important

CornellCALS

This is one of several questions our group is investigating

1) How does SO_2 get through the liner and alumina (Al_2O_3) layers? What form of SO_2 is involved

This is one of several questions our group is investigating

1) How does SO_2 get through the liner and alumina (Al_2O_3) layers?

2) Do other wine components exacerbate or mitigate H₂S production?

- PH, ethanol, Cu, Cl, polyphenols, acetate, and others
- There are recommendations . . . But based on what? How was this validated

Examples:

Cl- is well known to corrode bare aluminum

Cu can facilitate electrochemical reactions . . . But may also bind up H₂S ("labile" Cu, see Wilkes talk)

This is one of several questions our group is investigating

1) How does SO_2 get through the liner and alumina (Al_2O_3) layers?

2) Do other wine components exacerbate or mitigate H₂S production?

- PH, ethanol, Cu, Cl, polyphenols, acetate, and others
- There are recommendations . . . But based on what?

3) Will this wine work with this liner?

- Current tests are validated for corrosivity
- They are not validated for H₂S production
- What we want is a valid bench test

Ongoing work in the Sacks lab

Accelerated aging tests

- Al pieces ("coupons") coated with commercial liners
- Small volume containers
- Elevated temps

Evaluate model and real wines with a range of

compositions pH, Molecular SO₂, HSO₃⁻, Cl⁻, Cu, etc to determine key factors

Validate against canned wines

Take-home messages

SO₂ is used in packaged wines as an antimicrobial and antioxidant, The antioxidant role is hard to completely replace

 SO_2 can bypass or diffuse through liner to react w/ Al and form H_2S

What to do?

- Reconsider your free SO₂ target. For example, (10 + (4 × TPO)) mg/L at packaging instead of 30 mg/L
- Molecular may matter more
- Role of other components still murky

Current tests for wine+can interactions are either tedious, or based on overall corrosivity, or have not been validated

Ongoing work: appropriate small scale accelerated tests

Acknowledgements

Funding Sources:

Dr. Luna Maslov Bandić

Austin Montgomery

Industry cooperators

NSERC Canada Saltonstall Wine Endowment New York Wine and Grape Foundation

Survey Question

Analysis and Treatments for Canned Wine

Jasha Karasek Winemaking Specialist, Enartis USA

DATE 6/18/20

Overview

- Lowering SO_2 levels
- Antioxidant
- Antimicrobial
- Trials and results

LOW SO₂ WINEMAKING

How do we make wines with low(er) SO_2 ?

- Understand SO₂ activities
- Reduce SO₂ losses
- Replace SO_2 activities
- Reduce SO₂ additions at packaging

LOWERING SO₂ LEVELS STARTS AT HARVEST

CHEMICAL OXIDATION

Scheme 1 Proposed mechanism of catechol oxidation in wine. Fe(III)/ Fe(II) redox cycling and involvement of SO₂.

Danilewicz J. Interaction of sulfur dioxide, polyphenols, and Oxygen in a Wine – Model System: Centrol Role of Iron and Copper. Am. J. Enol. Vitic. 58:1 (2007)

METALS EFFECT ON SO₂ LOSSES

Scheme 1 Proposed mechanism of catechol oxidation in wine. Fe(III)/ Fe(II) redox cycling and involvement of SO_2 .

Danilewicz J. Interaction of sulfur dioxide, polyphenols, and Oxygen in a Wine – Model System: Centrol Role of Iron and Copper. Am. J. Enol. Vitic. 58:1 (2007)

METAL REMOVERS PVI/PVP & CHITOSAN

PVI/PVP

Vinylimidizole vinylpyrollidone

- Polymer which binds several different metal types.
- Also removes smaller phenolics like hydroxycinnamates

CHITOSAN

- Different forms available and vary in activities
- Processing can improve metal removal capacity
- Also removes smaller phenolics like catechins

POINTS WHERE METAL REMOVAL CAN OCCUR

METAL REMOVING OPTIONS

FINING AGENTS CHIARIFICANTI

CLARIL HM

FINING AGENTS CHIARIFICANTI

STABYL MET

POINTS WHERE METAL REMOVAL CAN OCCUR

Stabyl Met Containing Polysaccharide Blends

Pro FT/XP – Yeast hulls rich in polysaccharides blended with PVI/PVP

ROLE OF PHENOLICS SO₂ LOSSES

Scheme 1 Proposed interaction of a catechol and $\rm O_2$ in the presence of sulfite.

Figure 2 The effect of 4-MeC concentration on the reaction rate of SO₂ in the presence of Fe (5 mg/L) and Cu (0.15 mg/L) in the wine-model system.

Danilewicz J. Interaction of sulfur dioxide, polyphenols, and Oxygen in a Wine – Model System: Centrol Role of Iron and Copper. Am. J. Enol. Vitic. 58:1 (2007)

40

Tools for decreasing oxidative precursors

- PVPP Stabyl PVPP
- PVI/PVP Stabyl Met
- Polymer Blends Claril HM
- Chitosan Stab Micro
- Casein
- Hyperoxidation (not aromatic varieties)
- Separate hard press fractions

Scheme 1 Proposed mechanism of catechol oxidation in wine. Fe(III)/ Fe(II) redox cycling and involvement of SO_2 .

Danilewicz J. Interaction of sulfur dioxide, polyphenols, and Oxygen in a Wine – Model System: Centrol Role of Iron and Copper. Am. J. Enol. Vitic. 58:1 (2007)

PREVENTING SO₂ LOSSES – AVOIDING OXYGEN PICKUP

These are processes where oxygen pickup is highest

Operation	Range O ₂ pickup (mg/L)	
Racking	0.20 - 1.50	
Pumping	0.10 - 0.20	
Plate filtration	0.04 - 2.20	
DE filtration	0.24 - 1.10	
Cross Flow filtration	0.20 - 4.30	
Membrane filtration	0.20 – 2.10	
Cold stabilization	1.20 - 7.80	
Electrodialysis	0.20 - 2.70	
Bottling	0.38 - 9.10	

Adapted from : Morozova, K., Schmidt, O. (2011) Oxygen uptake during winemaking. FDW conference, Freiburg, April 6, 2011.

APPLICATION OF SO₂ FOR MICROBIAL PROTECTION

Chitosan: de-acetylation of chitin, polysaccharide derived from Aspergillus niger

Attraction chitosan (+) and microbe cell walls (-) => Death of cells

Enartis Stab Micro and Enartis Stab Micro M: Preactivated chitosan, higher charge, higher contact surface, better efficiency

STAB MICRO EFFECT ON SPOILAGE MICROORGANISMS

POINTS WHERE STAB MICRO CAN BE APPLIED

PARAMETER	+ SO ₂	LOW SO ₂
рН	3.56	3.54
Free SO ₂ (mg/L)	29	0
Total SO ₂ (mg/L)	61	1
VA (g/100 mL)	0.061	0.054
PCR Pedio (cell/mL)	ND	ND
PCR Lacto (cell/mL)	1.06 x 10^4	ND
PCR Zygo (cell/mL)	ND	ND
PCR Brett (cell/mL)	ND	ND

Trial Setup -

- Cider fermented with 10 g/hL Stab Micro M
- Treated with .1 ppm of Cu, then removed Cu with 10 g/hL Claril HM
- Canned with 0 ppm SO₂

- Same batch fermented without Stab Micro M
- Treated with .1 ppm of Cu, no addition of Claril HM
- Canned with 35 ppm Free SO₂, 70 ppm total

COMPLETE PROTOCOL CIDER EXAMPLE – NO SO₂, Cu REMOVED

COMPLETE PROTOCOL CIDER EXAMPLE

Comparing Low SO₂ and Copper removal impact

- Limiting SO₂ can help with reduction appearing in canned products
- Understanding the activities of SO₂ can help us to find ways to lower levels in canned wine production
- There is good evidence that low SO₂ and removing Copper may help with reduction.

JASHA KARASEK JASHA.KARASEK@ENARTIS.COM

