

Driving Chardonnay Wine Style

Lauren Barrett, Winemaking Specialist

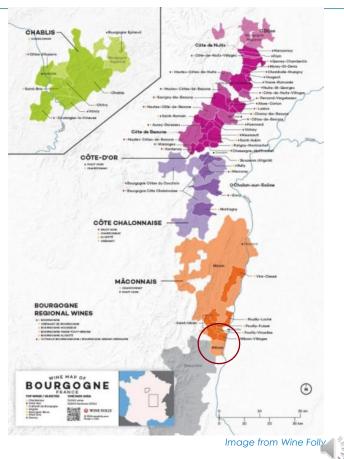
7/28/2020

Webinar Housekeeping

- This webinar is being recorded and will be published on the Enartis website
- Please refrain from using the chat box during the presentation for questions there will be 15 minutes for questions at the end of the presentation with a designated Q&A chat box.
- You can toggle the chat box closed if its distracting

Outline

- Chardonnay History and Current Relevance
- Vinification and Processing Strategies
- Chardonnay Aroma and Wine Style
 - Yeast Strains and Varietal Aroma
- Chardonnay Wine Styles and Malolactic Fermentation
- Winemaking Protocols and Recommended Chardonnay Strain Characteristics



Chardonnay History and Current Relevance

enartis

Origins

- Likely from the Mâcon Village in Mâconnais region of France
 - Earliest recorded reference in 1330
 - Medieval Latin, Cardonnacum "A place of thistles"
 - The most famous wines are from the "Golden Triangle of Burgundy"
 - Meursault, Puligny-Montrachet, and Chassagne-Montrachet
- White Burgundy:
 - Barrel fermentation on lees aging
 - 13% ABV, TA 6-7 g/L, pH 3.1-3.3
 - Ageing potential and reduction bouquet

Chardonnay History and Current Relevance

Chardonnay in the New World

- In California there are references of Chardonnay being grown in the late 1800's
- For more history on California Chardonnay check out Jancis Robinsons 4-part article on "The Story of California Chardonnay" Budwood imported by Charles Wetmore Meursault, Burgundy
- **Robinsons C**on California Chardonnay is budwood Norme Wente vineyard in Livermore and the Paul Masson Vineyard in the Santa Cruz Mountains
 - Today there are over 100 Chardonnay clones listed in the FPS directory.
- The 1976 Judgment of Paris
 - 1st Chateau Montelena
 - 3rd Chalone Vineyard
 - 4th Spring Mountain Vineyard
 - 6th Freemark Abbey Winery

Foundation Plant Services

Vinification and Processing Strategies

Preventing Oxidation and Spoilage

- Protect grapes as soon as liquid is extracted
- Keep temperatures low
 50-55°F

Phenols & polyphenol → browning & loss of color

Lipids \rightarrow bitterness & veggie hint

Aromatic compounds → loss of varietal aromas

- Antioxidant protection SO_2

- Winy (Non-clumping KMBS)
- Effergran (Effervescent KMBS)
- AST (Ascorbic acid)
- EnartisTan Blanc (Tannins)



Vinification and Processing Strategies

Whole Cluster or Crushed Grapes

- Whole Cluster Advantages:
 - Stems create channels to facilitate de-juicing
 - Limited extraction of phenols
 - Disadvantages:
 Reduces press capacity by 50%
- Crushed Grapes Advantages:
 - Allows skin contact and the use of enzymes
 - Disadvantages:
 - Increased extraction of phenols
 - Longer press cycle
 - Press aids

ENZYMES ENZYMI Enartis**Zym** AROM MP

Vinification and Processing Strategies

Extracting, Settling and Clarification

- Skin contact → 6-24 hours
 - Glucosidase enzyme application
 - Limit flavonoid extraction by lowering temperature < 55 °F/13°C

Low Pressing PSI

- Low pressing
- Limit suspended solids and dissolution of phenolic compounds
- voltammetry as a tool for benchmarking press fractions

• Settling (Static, flotation)

- Pectolytic enzyme
- Phenolic fining
- Target turbidity <200 NTU
- Reductive Winemaking
 - Limiting juice oxidation
 - Preservation of varietal aroma
- Passive-oxidation (Barrel fermentation)

Enartis**Pro**Enartis**Pro**Enartis**Pro**

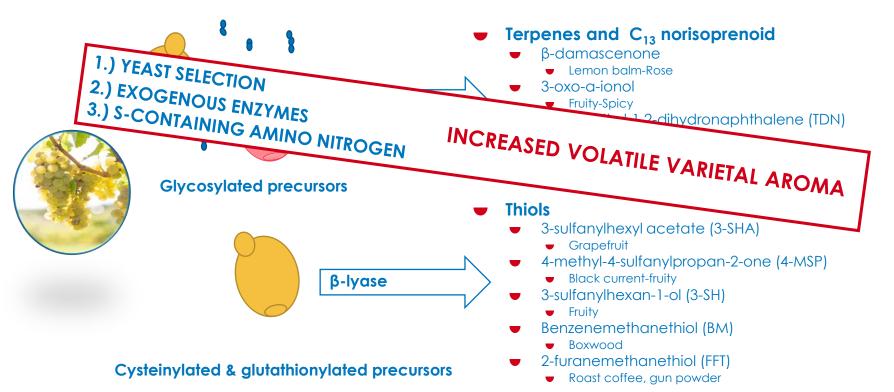
Preventing oxidation

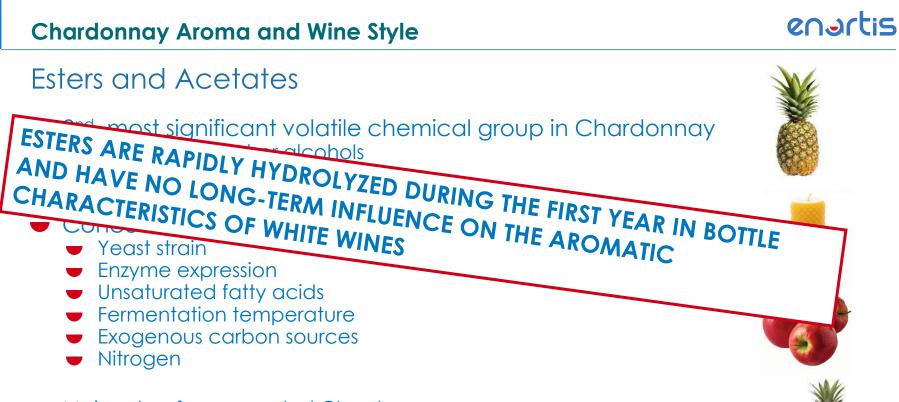

POLYSACCHARIDES

Removes metals-catalyzers of oxidation reactions

POLYSACCHARIDES

- Removes bitter and herbaceous compounds
- Enhances primary aromas (PRO FT)
- Provides yeast polysaccharides that enhance mouthfeel




Chardonnay Aroma and Wine Style

- Main esters for unwooded Chardonnay
 - Ethyl hexanoate, ethyl octanoate, ethyl decanoate, ethyl 2methylpropanoate, ethyl 2-methylbutanoate, ethyl 3-methylbutanoate, hexyl acetate, 2-methylbutyl acetate and 3-methylbutyl acetate.

Chardonnay Aroma and Wine Style

Yeast Strains and Varietal Aroma

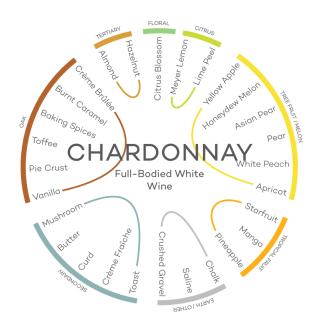
	MAIN ENZYMATIC ACTIVITIES	MAIN ENOLOGICAL EFFECT	MAIN SENSORY EFFECT	Temperature (°C)	
AROMA WHITE	Alcohol acetyl-transferase β-lyases	Reveals thiols and high ester production	Tropical and fruit aroma	15-17 thiols 18-21 esters	
ES 181	Alcohol acetyl-transferase β-lyases Glucosidase	Reveals thiols, terpens & nor- isoprenoids, production of esters	Tropical and fruit aroma	13-15	
VINTAGE WHITE	Glucosidase	Reveals terpenes and nor- isopernoids	Fruit aroma	14-24 barrel ferment	
Q CITRUS	Alcohol acetyl-transferase Glucosidase	Production of esters, reveals terpens and nor-isopernoids	Fruit aroma	12-13 Grapefruit 14-15 Citrus-Tropical 16-18 Tropical	

- Alcohol acetyl-transferase → INCREASED ACETATE ESTERS
- Glycosidase → GLYCO-CONJUGATED NOR-ISOPRENOIDS & TERPENES
- β -lyase \rightarrow CYSTEINE-CONJUGATED THIOLS

Chardonnay Aroma and Wine Style

Concentrations (mg/L) and Comparison of Volatile Compounds In Two Styles of Chardonnay Fruity and Oaky

- Increase in higher alcohols, ethyl acetate, and total esters (x4 increase) compared to stainless steel tanks
- Barrel fermentation favors extraction of oak related volatiles
 - Furfural reduction→ Benzenemethanethiol & 2furanemethanethiol



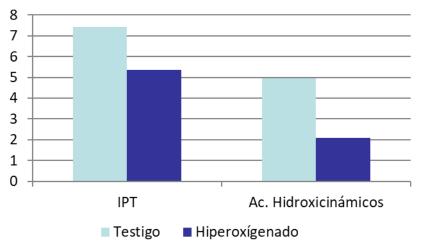
	Buettner et al.87			L	ee and Noble ⁴⁰			
	Fruity	Oaky	Factor of laky difference		Oaky	Factor of difference		
Ethyl isobutyrate	72.2	99.9	1.4	31	-			
Ethyl butanoate	263	3 341.5 1.3		844	1040	1.2		
Ethyl isovalerate	9.2	19.9	2.2	42	41	1.0		
3-methylbutyl acetate	943.7	163.5	0.2	519	349	0.7		
Ethyl hexanoate	757.2	737.5	1.0	843	600	0.7		
Linalool	-	-	-	50	31	0.6		
2-Phenylethanol	12415	24971	2.0	153840	116850	0.8		
Acetic acid	434232	489370	1.1	10000	11290	1.1 0.8		
Butanoic acid	1839	1611	0.9	1824	1505			
trans-Oak lactone	7.1	131.1	18.5	173	996	5.8		
cis-Oak lactone	17	214.8	12.6	33	382	11.6		
2-Methoxyphenol	henol 2.7 9.9 3.7 25		284	11.4				
Ethyl cinnamate	1.5	3.1	2.1	3	6	2.0		
Eugenol	1.6	8.9	5.6	21	362	17.2		
4-Vinylguaiacol	50.5	49.3	1.0	1356	380	0.3		
Vanillin	48.5	241.6	5.0	107	1223	11.4		

(Buettner et al, 2004; Gambetta et al, 2014; González-Marco et al, 2008; Lee and Noble, 2003)

Still Chardonnay Wines

- Oak Fermented and Aged Chardonnay
- Mineral, Citrus Driven Chardonnay
- Buttery, Toasty, Creamy Chardonnay

Oak Fermented and Aged Chardonnay



Oak Fermented and Aged Chardonnay

Barrel fermentation and Passive Oxidation

- Requires no SO₂ additions prior to fermentation
- Use of inert gases Nitrogen, Argon or CO₂ to prevent oxidation during crushing and pressing
- The goal is to oxidize phenols that will drop to the bottom during settling
- Early elimination of oxidizable compounds that could cause browning and loss of fruit aromas at racking

Hyper-oxidation effect on the phenolic composition of white juice

Chardonnay Wine Styles

Oak Fermented and Aged Chardonnay

 Pressed and settled Chardonnay juice is racked into barrel with headspace

- Enological Enzymes and Yeast derivatives can mimic the effect of Sur Lie aging, saving time and mitigating negative volatile Sulphur aroma Chardonnay stays in contact With Michael Sulphur aroma for several months were batonnage (stirring of lees) is typically practiced
 - Reducing power of the lees protects wine from oxidation
 - Yeast autolysis releases mannoproteins and polysaccharides over 12-month period

Oak Fermented and Aged Chardonnay

Optimizing Sur Lies Aging

- Inactivated yeasts meant to complement natural lees in the sure lies phase
- Very fast in release mannoproteins compared to endogenous lees \rightarrow 3-4 weeks of treatment with daily homogenization

Surli Elevage

- Inactivated yeast rich in free mannoproteins
- 24-48 hours contact with daily homogenization

EnartisZym Elevage

- Micro-granulated pectolytic enzyme preparation with significant B-glucanase activity, developed to enhance wine sensory characteristics during lees ageing and improve wine filterability
- 2-5 g/hL dosage with 4-6 weeks of treatment

EnartisZym EZ Filter

- Liquid enzyme preparation with pectolytic activity (polygalacturonase, pectinesterase, pectin lyase and betaglucanase activity.
- 2-5 g/hL dosage with 4-6 weeks of treatment

POLYSACCHARIDES POLISACCARIDI

SURI Ì

ELEVAGE

ENZYMES ENZIMI Enartis**Zym** EZFILTER

Mineral, Citrus Driven Chardonnay

Chardonnay Wine Styles

Mineral, Citrus Driven Chardonnay

Minerality Associated Compounds

- Methanethiol (MeSH) has been positively correlated with perceived minerality along with ethyl esters.
- Increasing succinic acid is correlated with the perception of minerality.

Winemaking practices for increasing succinic acid:

- Higher solids
- Moderate SO₂ addition
- Fermentation temperature < 68°F (20°C)
- Target nitrogen supplementation to at least 300 mg/L YAN (limit amino nitrogen)
- Aeration during fermentation (2 mg/L during early stages)

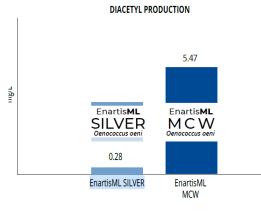
Buttery, Toasty, Creamy Chardonnay

Buttery, Toasty, Creamy Chardonnay

- Malolactic Strain Selection and Diacetyl Production
 Chemical compound responsible for driving this style
 - Homolactic/heterolactic sugar metabolism pathways as well as by the utilization of citric acid
 - 1-3 mg/L Nutty
 - 5-7 mg/L Buttery

Increasing Mouthfeel and Diacetyl

- Choice of yeast strain and lower Inoculation rate (10⁴-10⁵ CFU/mL)
- Temperature above 64°F (18°C)
- Mitigate contact with lees \rightarrow Absorption
- Semi-aerobic environments
- Redox 300mV and 2-4 mg/L O_2 (Nielsen and Richelieu, 1999)
- Sulfite wines once desired level of character is reached
 - SO_2 reacts with diacetyl in a reversible manner \rightarrow re-releasing during maturation


Chardonnay Wine Styles and Malolactic Fermentation

Malolactic Bacteria

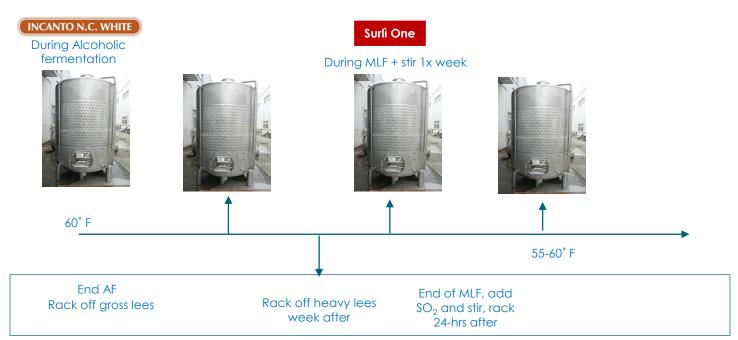
Deacidification and Biological stability

Aroma enhancement

 Glycosidase activity can release terpenes, C13norisoprenoids and other glycoconjugates in model wine, even when MLF does not take place (Hernandez-Orte et al, 2009)

EnartisML MCW produces high amounts of diacetyl which contributes to buttery, creamy notes in wine.

ENARTIS STRAINS	EnartisML MCW	EnartisML SILVER	EnartisML UNO			
SPECIES	Oenococcus oeni					
pH TOLERANCE	>3.1	>3.1	>3.3			
TOTAL SO ₂ RESISTANCE (mg/L)	<40	<45	<40			
FREE SO ₂ RESISTANCE (mg/L)	<10	<10	<10			
ALCOHOL TOLERANCE (%v/v)	>15	>15	<15			
CONVERSION SPEED	Moderate/High	High	Moderate			
AROMATIC CHARACTERISTICS	Buttery, "Sweet"	Fruity, Floral	Fruity, Varietal			



Chardonnay Wine Styles and Malolactic Fermentation

Malolactic Fermentation in Tank

Rack-off gross lees after AF and inoculate with ML Silver + Nutriferm Osmobacti

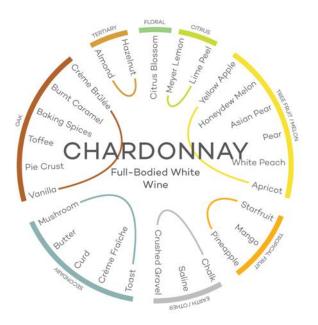
- Rack after 1 week if heavy lees are formed, then stir once per week during MLF
- After ML is completed, add SO₂ stir and rack 24-hrs after

Chardonnay Wine Styles and Malolactic Fermentation

Malolactic Fermentation in Barrel

- Keep temperature between 60-65°F
- Top Barrel at 0°Brix and Inoculate with ML Silver + Nutriferm Osmobacti
- Stir once a week during MLF
- Once complete add SO₂ and rack off lees 2-3 days after \rightarrow return to barrel for aging on light lees

Winemaking Protocols


Driving Chardonnay Wine Style

Full Winemaking Protocols are in Sending Documents

- Available in downloadable material and online
 - <u>Classic California Chardonnay</u>

Increasing Minerality

Winemaking Protocols and Recommended Chardonnay Strain Characteristics

Chardonnay Strain Characteristics

YEAST SELECTION	OPTIMAL TEMPERATURE RANGE (°C)	lag Phase	FERMENTATION SPEED	ALCOHOL TOLERANCE	NITROGEN NEEDS	OXYGEN NEEDS	VA PRODUCTION	H2S PRODUCTION	SO2 PRODUCTION	COMPATIBILITY MLF	RESISTANCE TO SO2
EnartisFerm Q CITRUS	10-22	Short	High	15	Med	Med	Med	Low	Med	Low	High
EnartisFerm AROMA WHITE	14-24	Med	Med	15	Med	Med	Low	Low	Low	Ν	Med
EnartisFerm VINTAGE WHITE	14-24	Short	Med	15.5	High	Med	Low	Low	Low	High	Med
EnartisFerm E\$181	10-20	Short	High	16.5	Low	Low	Low	Low	Low	Low	High
		YEAST Lieviti Enartis Ferm Q CITRUS		EnartisFerm AROMA WHITE		veast Lieviti Enartis Ferm /INTAGE WHITE	 Enar	east ieviii tis Ferm S181			
											29

Thank you!

enartis

Lauren Barrett, Winemaking Specialist Lauren.barrett@enartis.com

Varietal Focus: Chardonnay

enartis

Citations

- Buettner, Andrea. "Investigation of potent odorants and afterodor development in two Chardonnay wines using the buccal odor screening system (BOSS)." Journal of Agricultural and Food Chemistry 52.8 (2004): 2339-2346.
- Gambetta, Joanna M., et al. "Factors influencing the aroma composition of Chardonnay wines." Journal of Agricultural and Food Chemistry 62.28 (2014): 6512-6534.
- González-Marco, Ana, Nerea Jiménez-Moreno, and Carmen Ancín-Azpilicueta. "Concentration of volatile compounds in Chardonnay wine fermented in stainless steel tanks and oak barrels." Food chemistry 108.1 (2008): 213-219.
- Hernandez-Orte, P., et al. "Aroma development from non-floral grape precursors by wine lactic acid bacteria." Food Research International 42.7 (2009): 773-781.
- Maltman, Alex. "Minerality in wine: a geological perspective." Journal of Wine Research 24.3 (2013): 169-181.
- Nielsen, Jan Clair, and Marianne Richelieu. "Control of flavor development in wine during and after malolactic fermentation by Oenococcus oeni." Applied and environmental microbiology 65.2 (1999): 740-745.
- Robinson, Jancis "The Story of California Chardonnay" 2018, <u>https://www.jancisrobinson.com/articles/the-story-of-california-chardonnay-part-3</u>
- Rodrigues, Heber, et al. "Sensory and chemical drivers of wine minerality aroma: An application to Chablis wines." Food chemistry 230 (2017): 553-562.
- Ribéreau-Gayon, Pascal, et al., eds. Handbook of enology, Volume 1: The microbiology of wine and vinifications. Vol. 1. John Wiley & Sons, 2006.
- Sweet, Nancy L. "Chardonnay History and Selections at FPS." FPS Grape Program Newsletter (2007).