

RED WINES LOW SO₂ Winemaking

Critical steps for reducing use of SO₂ in red wines:

- <u>pH management</u> is an essential parameter to increase the effect of SO₂ as an antioxidant and antimicrobial. Bacteria are pH sensitive and will be under better control in a low pH environment.
- Work ONLY with healthy grapes and low pH.
- Increase <u>antioxidasic protection</u> on grapes to inhibit polyphenol oxidase, laccase and lipoxygenases with gallic tannins.
- Increase antioxidant protection with sacrificial tannins to limit color loss, browning and aroma oxidation.
- Increase antiradical protection during ageing with radical scavenger sacrificial tannins.
- <u>Protect against oxidation</u> by using high oxygen consumption lees during ageing.
- Antimicrobial protection: Limit development of spoilage microbes at juice stage and during ageing.
- Pay extra attention to sanitation and quality control (microscan/PCR, VA, FSO₂ and tasting) to prevent any wine spoilage.

WINEMAKING STAGE	OBJECTIVE	ENARTIS RECOMMENDATION	DOSAGE	
Adjust pH as soon as possible.				
Crusher	Antimicrobial	EnartisStab Micro M (pre-activated chitosan and purified yeast hulls) to remove spoilage microorganisms such as <i>Brettanomyces</i> , lactic acid, acetic acid bacteria, and non- <i>Saccharomyces</i> yeasts.	150 g/ton	
	Antioxidant	EnartisTan Rouge (condensed and hydrolysable tannins) to act as a sacrificial tannin and limit the oxidasic activity of grape enzymes.	200 g/ton	
		To reduce SO_2 dosage, use AST : Blend of ascorbic acid, gallic tannins and SO_2 for complete antioxidant protection. 100 ppm of AST = 28 ppm SO_2 .		
Fermentation	Color Stabilization	EnartisTan Color (gallic and condensed tannins from grape seeds with yeast derivatives rich in antioxidant peptides) at inoculation to improve color stability and protect against oxidation.	20 g/hL	
		EnartisPro Tinto at 1/3 alcoholic fermentation (yeast derivatives and grape seed tannins) to promote color stability and balance mouthfeel.	20-30 g/hL	
Ageing	Antioxidant + Antimicrobial	SO2 20-30 DAYS AFTER END OF FERMENTATION AND RACKING. Essential SO2 addition to protect wine during ageing. Mange Free SO2 level with pH to be above 0.6 ppm molecular SO2.		
	Antimicrobial	EVERY RACKING EnartisStab Micro (pre-activated chitosan, removes spoilage microorganisms such as Brettanomyces, lactic acid, acetic acid bacteria) to prevent development of spoilage microorganisms.	3-5 g/hL	
	Antioxidant	EVERY RACKING EnartisTan SLI (untoasted American oak tannins) for its strong antiradical effect and to stabilize wine redox potential.	2-3 g/hL	

The above is achieved to the best of our knowledge and experience. The industrial application of the advice provided does not imply any responsibility on the part of our company.

Recommended

WINEMAKING STAGE	OBJECTIVE	ENARTIS RECOMMENDATION	DOSAGE
Fermentation	Yeast Nutrition	MEASURE YAN TO CALCULATE NUTRITIONAL NEEDS Nutriferm Energy (amino acids, vitamins, minerals and micro-nutrients) at inoculation.	10-20 g/hL
		Nutriferm Advance (complex nutrient with DAP, yeast hulls and cellulose) at 1/3 of AF.	20-30 g/hL
		Nutriferm No Stop (purified and selected yeast cell walls rich in sterol and unsaturated fatty acids) after ¹ / ₂ AF.	20 g/hL
Malolactic Fermentation	ML Bacteria	Rehydrate EnartisML Silver with Nutriferm Osmobacti (activator and regulator of osmotic pressure specific for ML bacteria).	
Ageing	Antioxidant	Surli One (active yeast derivatives) for wine ageing capacity, to consume dissolved oxygen and protect against oxidation.	20-30 g/hL