

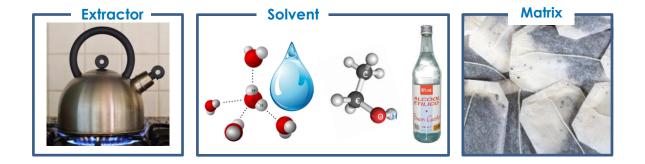
enartis

Tannins and Polysaccharides for Aging

Jasha Karasek Winemaking Specialist, Enartis USA

2/23/21

Agenda


Overview

- Tannins
- Enological Tannin Production
- Enological Tannin Types
- Tannins for Aging
- Yeast Polysaccharides
- Origins and Uses
- How to Balance a Wine
- Bench Trials

ENOLOGICAL TANNIN PRODUCTION

enartis

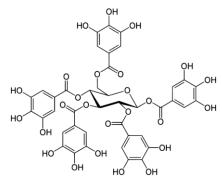
How a tannin is made, is <u>very</u> important for its properties

Extraction

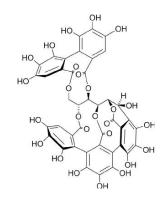
Occoncentration

OAtomization

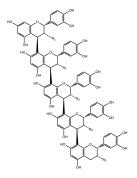
TANNIN MATRIX


enartis

The starting material is the foundation of its characteristics



Gallotannin



Ellagitannin

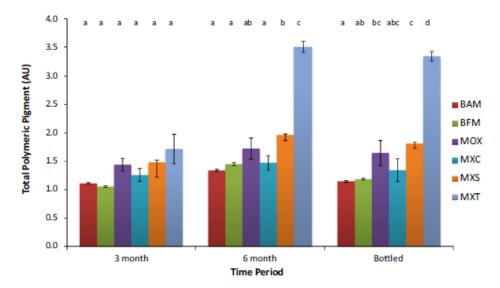
Condensed

R₁=H or OH R₂=OH or galloyl

How to decide which tannin you want to use?

- What is the wines style objective?
- What are the current tannin levels?
- What are any additional technical features you are looking for?

Enartis**Tan** CŒUR DE CHÊNE


Origin: light-toast seasoned French Oak

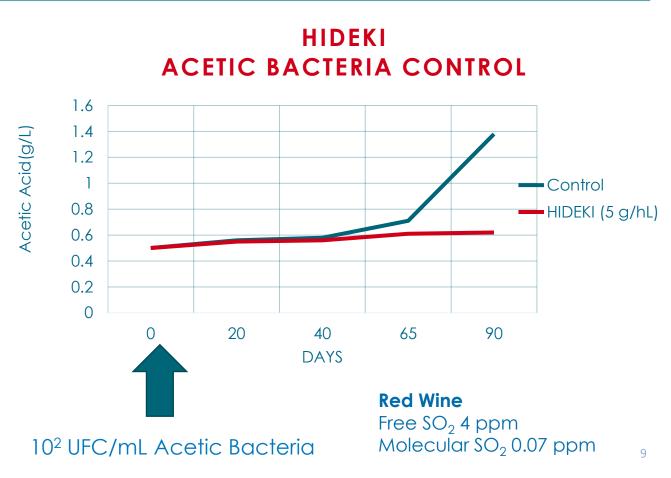
Mouthfeel : soft, improves mid palate Aroma: spice, vanilla, caramel Other benefits: color stab

A. Oberholster et al. / Food Chemistry 173 (2015) 1250-1258

Origin: Mature white grape seed Mouthfeel : Tightens structure and fills mid palate Aroma: Black tea, spice Other benefits: Color stability

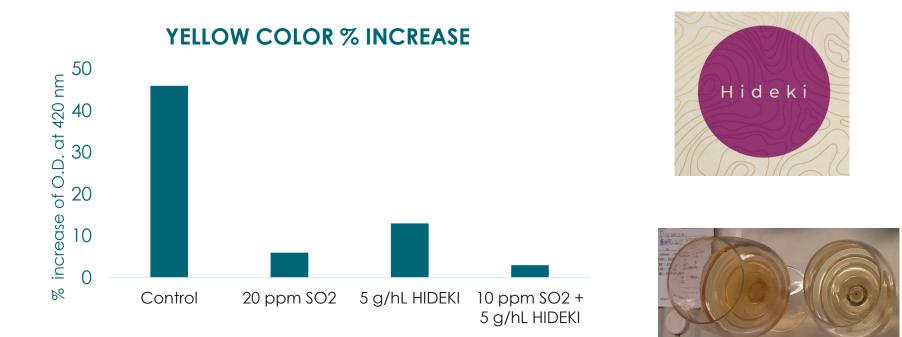
	Control	+ Proanthocyanin
Initial		
Total Condensed Tannin g/L	2,8	3,4
Anthocyanin g/L	0,8	0,8
Polymerized Condensed Tannin%	15	15
Combined Anthocyanin %	17	17
3 Months + O ₂		
Total Condensed Tannin g/L	2,9	3,2
Anthocyanin g/L	0,6	<mark>0,4</mark>
Polymerized Condensed Tannin%	23	<mark>28</mark>
Combined Anthocyanin %	25	<mark>38</mark>


Vivas et al. 2017



Tannin Type: Blend of gallic, ellagic, condensed tannin Mouthfeel : neutral Aroma: Non-Aromatic Technical use: Microbiostatic and antioxidant

HIDEKI: MICROBIOSTATIC ACTION



HIDEKI - ANTIOXIDANT

CONTROL

HIDEKI 5 g/hL

HOW TO SELECT THE RIGHT TANNIN – TECHNICAL APPLICATION

	CONDENSED	GALLIC	ELLAGIC
PROTEIN PRECIPITATION	***	•	**
ANTIOXIDASIC EFFECT	•		***
ANTIRADICAL EFFECT	•	**	***
EFFECT ON REDOX POTENTIAL	Decreases	Stabilizes	INCREASES (if extracted from toasted wood) STABILIZES (if extracted from untoasted wood)
MERCAPTAN REMOVAL	66	•	***
METAL CHELATION	•	**	***
COLOR STABILIZATION	***	•	**
ANTIOXIDANT EFFECT	**	***	**
MICROSTATIC EFFECT	•	***	•

WINEMAKING EFFECT	TANNIN		
Protein precipitation	EnartisTan CLAR		
Antioxidasic effect	EnartisTan ANTIBOTRYTIS		
Antiradical effect	EnartisTan SLI EnartisTan ELEVAGE EnartisTan BLANC		
Mercaptan removal	EnartisTan SLI EnartisTan ELEVAGE EnartisTan MAX NATURE		
Metal chelation	EnartisTan SLI EnartisTan ELEVAGE EnartisTan BLANC		
Color stabilization	EnartisTan V EnartisTan E		
Antioxidant protection	EnartisTan SLI EnartisTan BLANC EnartisTan UNICO #3		

enartis

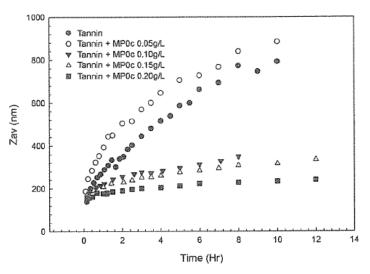
YEAST POLYSACCHARIDES


BATTONAGE, SUR LIE AGING



MAIN TYPES

YEAST POLYSACCHARIDES - MANNOPROTEINS



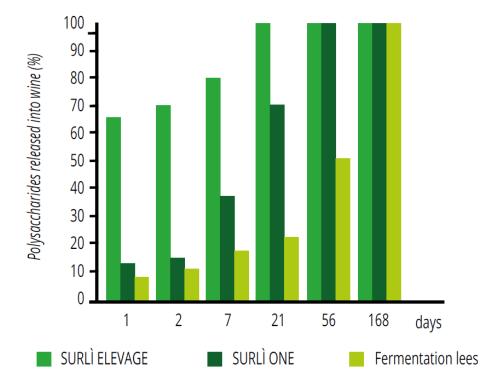
YEAST MANNOPROTEINS PROPERTIES

- 80-90 % Mannose, 10-20% protein
- About 40% of yeast cell wall weight
- Negatively charged
- Interacts with other wine colloids
- Improves tartrate stability
- Limits tannin aggregation
- Released in two phases, during fermentation, and Sur lie (autolysis)

Figure 1 Time-dependence of grape seed tannin aggregation: evolution of aggregate size monitored by dynamic light scattering, with or without MP0c addition in the tartarate buffer (tannin concentration: 1 g L⁻¹ in (v/v) water/ethanol 12%, 2 g L⁻¹ tartaric acid).

SURLI ONE, SURLI ELEVAGE

POLYSACCHARIDES POLISACCARIDI


> SURLÌ ONE

FASTER MANNOPROTEIN EXTRACTION

OTHER SITUATIONS WHERE YEAST DERIVATIVES ARE HELPFUL

- Reduced Lees
- Smoke tainted lees
- Brettanomyces
- Other off flavors or aromas

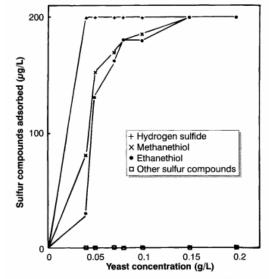
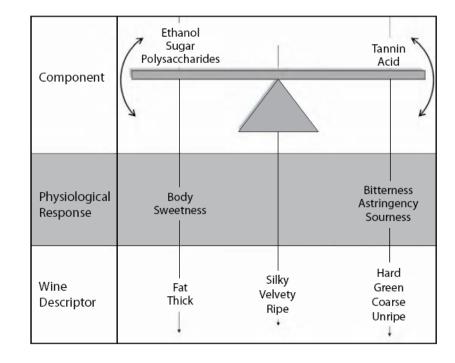


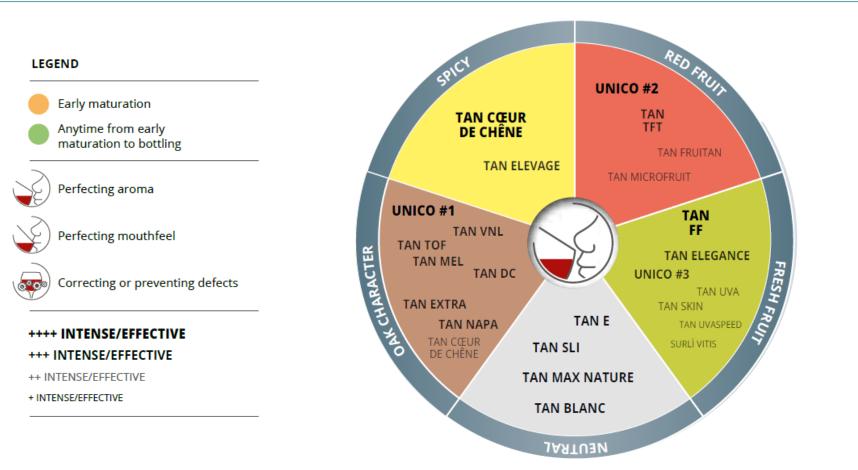
Fig. 1. Adsorption of sulfur compounds by yeast lees. (+) hydrogen sulfide; (x) methanethiol; (●) ethanethiol; (□) other sulfur compounds.

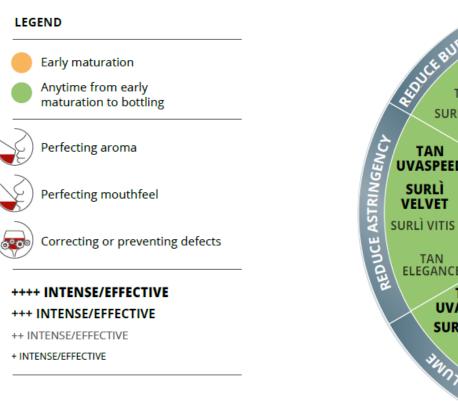
Technical Brief Evidence For Sulfur Volatile Products Adsorption by Yeast Lees

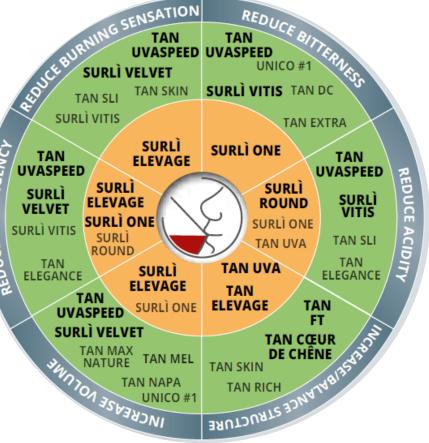
S. PALACIOS¹, Y. VASSEROT^{2*}, and A. MAUJEAN³

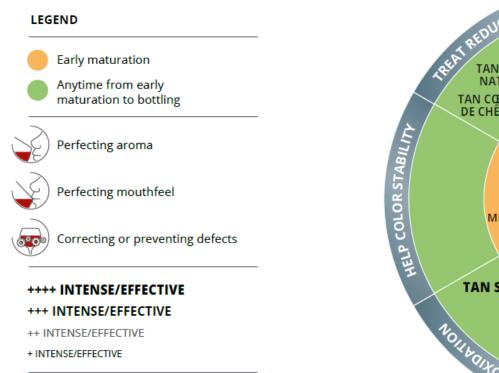

Am. J. Enol. Vitic., Vol. 48, No. 4, 1997

BALANCING A WINE


What are the components of mouthfeel balance?




GUIDE FOR WINE AROMA IMPROVEMENT

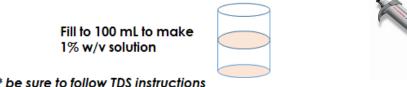



GUIDE FOR IMPROVING MOUTHFEEL

TECHNICAL APPLICATION OF TANNINS AND POLYSACCHARIDES

HOW TO USE THEM – ALWAYS BENCH TRIAL

BENCH TRIALS ARE EASY WHEN YOU HAVE THE EQUIPMENT


- Pipetteman
- 10 x Bottles (~100 mL)
- Scale (0.01 g +)
- Tannin / Polysaccharide Samples W/ TDS sheets
- Beakers, wine glasses
- Bench Trial calculator (Enartis.com)

1 g Tannin / Polysaccharide

** be sure to follow TDS instructions on preparation of solution

- Tannins are not all the same!
- Finding the right tannin for your wine can be challenging, narrow selection by defining objective goals
- Oak and Grape based tannins can both be used in aging to improve sensory properties and benefit wine quality
- Enartis has tools to aid in finding the right tannin or polysaccharide for your objective
- Bench trials are a great process for testing sensory impact of tannins and polysaccharides

enartis

JASHA KARASEK JASHA.KARASEK@ENARTIS.COM

